d-HDDR Processing of Nd-Fe-B Based Alloys to Obtain Highly Anisotropic Nanocrystalline Powders

The HDDR (hydrogenation-disproportionation-desorption-recombination) process is an established powder metallurgy route to obtain Nd–Fe–B nanocrystalline powders for bonded magnets manufacturing. Therefore, both conventional (c-HDDR) and dynamic HDDR (d-HDDR) processes has been investigated to obtain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2017-07, Vol.899, p.563-566
Hauptverfasser: Keller, Frederico Orlandini, Engerroff, Juliano Assis Baron, Wendhausen, Paulo Antônio Pereira, Mascheroni, Arthur Alvarez, Lopes, Leonardo Ulian, Takiishi, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 566
container_issue
container_start_page 563
container_title Materials science forum
container_volume 899
creator Keller, Frederico Orlandini
Engerroff, Juliano Assis Baron
Wendhausen, Paulo Antônio Pereira
Mascheroni, Arthur Alvarez
Lopes, Leonardo Ulian
Takiishi, H.
description The HDDR (hydrogenation-disproportionation-desorption-recombination) process is an established powder metallurgy route to obtain Nd–Fe–B nanocrystalline powders for bonded magnets manufacturing. Therefore, both conventional (c-HDDR) and dynamic HDDR (d-HDDR) processes has been investigated to obtain Nd-Fe-B-based powders with different characteristics. Magnetic properties were measured by means of a hysteresisgraph and the powder obtained by d-HDDR showed strong anisotropy, allowing a Br of 1.1 T in the bonded magnet, whereas c-HDDR powder was isotropic with a Br of 0.6 T. Microstructural changes were characterized by X-ray diffraction (DRX) and scanning electron microscopy (SEM). X-ray patters of anisotropic powders made by d-HDDR showed high intensity reflection peaks indexed as (004), (105) and (006) planes in the aligning direction, due the texture inducement in c-axis of the main phase (Nd2Fe14B). However, SEM micrographs of c-HDDR powder showed a more homogeneous microstructure, with grain size of ~300 nm, when compared to d-HDDR powder that ranged from 300 nm to 500 nm. This difference is assumed to be the cause of lower intrinsic coercivity found in the c-HDDR powder.
doi_str_mv 10.4028/www.scientific.net/MSF.899.563
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1916850689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1916850689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2713-cedfd417f4aa519d8e1f6a342478a838e599aa6beaa8427d5d12cad98c5ca2553</originalsourceid><addsrcrecordid>eNqN0EtLAzEUBeAgCtbHfwgI7maczEwyyUasj1pBW_GxNVyTjEbGpCaR0n9vpIIuXd3N4Rzuh9Ahqcq2qvnRcrkso7LGJdtbVTqTjm7uJyUXoqSs2UAjwlhdiI7Wm2hU1ZQWtO3YNtqJ8a2qGsIJG6EnXUzPz-_wbfDKxGjdC_Y9nuliYopTfArRaDweBr-KOHk8f05gHZ7al9dhhcfORp-CX1iFZ-C8CquYYBisM_jWL7UJcQ9t9TBEs_9zd9Hj5OLhbFpczy-vzsbXhao70hTK6F63pOtbAEqE5ob0DJq2bjsOvOGGCgHAng0Ab-tOU01qBVpwRRXkz5pddLDuXQT_8Wlikm_-M7g8KYkgjNOKcZFTx-uUCj7GYHq5CPYdwkqSSn6bymwqf01lNpXZVGZTmU1zwcm6IAVwMRn1-mfnfxVfpHSI2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916850689</pqid></control><display><type>article</type><title>d-HDDR Processing of Nd-Fe-B Based Alloys to Obtain Highly Anisotropic Nanocrystalline Powders</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>Scientific.net Journals</source><creator>Keller, Frederico Orlandini ; Engerroff, Juliano Assis Baron ; Wendhausen, Paulo Antônio Pereira ; Mascheroni, Arthur Alvarez ; Lopes, Leonardo Ulian ; Takiishi, H.</creator><creatorcontrib>Keller, Frederico Orlandini ; Engerroff, Juliano Assis Baron ; Wendhausen, Paulo Antônio Pereira ; Mascheroni, Arthur Alvarez ; Lopes, Leonardo Ulian ; Takiishi, H.</creatorcontrib><description>The HDDR (hydrogenation-disproportionation-desorption-recombination) process is an established powder metallurgy route to obtain Nd–Fe–B nanocrystalline powders for bonded magnets manufacturing. Therefore, both conventional (c-HDDR) and dynamic HDDR (d-HDDR) processes has been investigated to obtain Nd-Fe-B-based powders with different characteristics. Magnetic properties were measured by means of a hysteresisgraph and the powder obtained by d-HDDR showed strong anisotropy, allowing a Br of 1.1 T in the bonded magnet, whereas c-HDDR powder was isotropic with a Br of 0.6 T. Microstructural changes were characterized by X-ray diffraction (DRX) and scanning electron microscopy (SEM). X-ray patters of anisotropic powders made by d-HDDR showed high intensity reflection peaks indexed as (004), (105) and (006) planes in the aligning direction, due the texture inducement in c-axis of the main phase (Nd2Fe14B). However, SEM micrographs of c-HDDR powder showed a more homogeneous microstructure, with grain size of ~300 nm, when compared to d-HDDR powder that ranged from 300 nm to 500 nm. This difference is assumed to be the cause of lower intrinsic coercivity found in the c-HDDR powder.</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>EISSN: 1662-9752</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.899.563</identifier><language>eng</language><publisher>Pfaffikon: Trans Tech Publications Ltd</publisher><subject>Alignment ; Alloy development ; Alloys ; Anisotropy ; Bonding strength ; Coercivity ; Desorption ; Disproportionation ; Ferrous alloys ; Grain size ; Hydrogenation ; Magnetic materials ; Magnetic properties ; Magnets ; Microstructure ; Nanocrystals ; Neodymium base alloys ; Photomicrographs ; Planes ; Powder metallurgy ; Scanning electron microscopy ; X-ray diffraction</subject><ispartof>Materials science forum, 2017-07, Vol.899, p.563-566</ispartof><rights>2017 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jul 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2713-cedfd417f4aa519d8e1f6a342478a838e599aa6beaa8427d5d12cad98c5ca2553</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4467?width=600</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1916850689?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21389,21390,23256,27924,27925,33530,33703,34314,43659,43787,44067</link.rule.ids></links><search><creatorcontrib>Keller, Frederico Orlandini</creatorcontrib><creatorcontrib>Engerroff, Juliano Assis Baron</creatorcontrib><creatorcontrib>Wendhausen, Paulo Antônio Pereira</creatorcontrib><creatorcontrib>Mascheroni, Arthur Alvarez</creatorcontrib><creatorcontrib>Lopes, Leonardo Ulian</creatorcontrib><creatorcontrib>Takiishi, H.</creatorcontrib><title>d-HDDR Processing of Nd-Fe-B Based Alloys to Obtain Highly Anisotropic Nanocrystalline Powders</title><title>Materials science forum</title><description>The HDDR (hydrogenation-disproportionation-desorption-recombination) process is an established powder metallurgy route to obtain Nd–Fe–B nanocrystalline powders for bonded magnets manufacturing. Therefore, both conventional (c-HDDR) and dynamic HDDR (d-HDDR) processes has been investigated to obtain Nd-Fe-B-based powders with different characteristics. Magnetic properties were measured by means of a hysteresisgraph and the powder obtained by d-HDDR showed strong anisotropy, allowing a Br of 1.1 T in the bonded magnet, whereas c-HDDR powder was isotropic with a Br of 0.6 T. Microstructural changes were characterized by X-ray diffraction (DRX) and scanning electron microscopy (SEM). X-ray patters of anisotropic powders made by d-HDDR showed high intensity reflection peaks indexed as (004), (105) and (006) planes in the aligning direction, due the texture inducement in c-axis of the main phase (Nd2Fe14B). However, SEM micrographs of c-HDDR powder showed a more homogeneous microstructure, with grain size of ~300 nm, when compared to d-HDDR powder that ranged from 300 nm to 500 nm. This difference is assumed to be the cause of lower intrinsic coercivity found in the c-HDDR powder.</description><subject>Alignment</subject><subject>Alloy development</subject><subject>Alloys</subject><subject>Anisotropy</subject><subject>Bonding strength</subject><subject>Coercivity</subject><subject>Desorption</subject><subject>Disproportionation</subject><subject>Ferrous alloys</subject><subject>Grain size</subject><subject>Hydrogenation</subject><subject>Magnetic materials</subject><subject>Magnetic properties</subject><subject>Magnets</subject><subject>Microstructure</subject><subject>Nanocrystals</subject><subject>Neodymium base alloys</subject><subject>Photomicrographs</subject><subject>Planes</subject><subject>Powder metallurgy</subject><subject>Scanning electron microscopy</subject><subject>X-ray diffraction</subject><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqN0EtLAzEUBeAgCtbHfwgI7maczEwyyUasj1pBW_GxNVyTjEbGpCaR0n9vpIIuXd3N4Rzuh9Ahqcq2qvnRcrkso7LGJdtbVTqTjm7uJyUXoqSs2UAjwlhdiI7Wm2hU1ZQWtO3YNtqJ8a2qGsIJG6EnXUzPz-_wbfDKxGjdC_Y9nuliYopTfArRaDweBr-KOHk8f05gHZ7al9dhhcfORp-CX1iFZ-C8CquYYBisM_jWL7UJcQ9t9TBEs_9zd9Hj5OLhbFpczy-vzsbXhao70hTK6F63pOtbAEqE5ob0DJq2bjsOvOGGCgHAng0Ab-tOU01qBVpwRRXkz5pddLDuXQT_8Wlikm_-M7g8KYkgjNOKcZFTx-uUCj7GYHq5CPYdwkqSSn6bymwqf01lNpXZVGZTmU1zwcm6IAVwMRn1-mfnfxVfpHSI2A</recordid><startdate>20170703</startdate><enddate>20170703</enddate><creator>Keller, Frederico Orlandini</creator><creator>Engerroff, Juliano Assis Baron</creator><creator>Wendhausen, Paulo Antônio Pereira</creator><creator>Mascheroni, Arthur Alvarez</creator><creator>Lopes, Leonardo Ulian</creator><creator>Takiishi, H.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20170703</creationdate><title>d-HDDR Processing of Nd-Fe-B Based Alloys to Obtain Highly Anisotropic Nanocrystalline Powders</title><author>Keller, Frederico Orlandini ; Engerroff, Juliano Assis Baron ; Wendhausen, Paulo Antônio Pereira ; Mascheroni, Arthur Alvarez ; Lopes, Leonardo Ulian ; Takiishi, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2713-cedfd417f4aa519d8e1f6a342478a838e599aa6beaa8427d5d12cad98c5ca2553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alignment</topic><topic>Alloy development</topic><topic>Alloys</topic><topic>Anisotropy</topic><topic>Bonding strength</topic><topic>Coercivity</topic><topic>Desorption</topic><topic>Disproportionation</topic><topic>Ferrous alloys</topic><topic>Grain size</topic><topic>Hydrogenation</topic><topic>Magnetic materials</topic><topic>Magnetic properties</topic><topic>Magnets</topic><topic>Microstructure</topic><topic>Nanocrystals</topic><topic>Neodymium base alloys</topic><topic>Photomicrographs</topic><topic>Planes</topic><topic>Powder metallurgy</topic><topic>Scanning electron microscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keller, Frederico Orlandini</creatorcontrib><creatorcontrib>Engerroff, Juliano Assis Baron</creatorcontrib><creatorcontrib>Wendhausen, Paulo Antônio Pereira</creatorcontrib><creatorcontrib>Mascheroni, Arthur Alvarez</creatorcontrib><creatorcontrib>Lopes, Leonardo Ulian</creatorcontrib><creatorcontrib>Takiishi, H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Materials science forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keller, Frederico Orlandini</au><au>Engerroff, Juliano Assis Baron</au><au>Wendhausen, Paulo Antônio Pereira</au><au>Mascheroni, Arthur Alvarez</au><au>Lopes, Leonardo Ulian</au><au>Takiishi, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>d-HDDR Processing of Nd-Fe-B Based Alloys to Obtain Highly Anisotropic Nanocrystalline Powders</atitle><jtitle>Materials science forum</jtitle><date>2017-07-03</date><risdate>2017</risdate><volume>899</volume><spage>563</spage><epage>566</epage><pages>563-566</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><abstract>The HDDR (hydrogenation-disproportionation-desorption-recombination) process is an established powder metallurgy route to obtain Nd–Fe–B nanocrystalline powders for bonded magnets manufacturing. Therefore, both conventional (c-HDDR) and dynamic HDDR (d-HDDR) processes has been investigated to obtain Nd-Fe-B-based powders with different characteristics. Magnetic properties were measured by means of a hysteresisgraph and the powder obtained by d-HDDR showed strong anisotropy, allowing a Br of 1.1 T in the bonded magnet, whereas c-HDDR powder was isotropic with a Br of 0.6 T. Microstructural changes were characterized by X-ray diffraction (DRX) and scanning electron microscopy (SEM). X-ray patters of anisotropic powders made by d-HDDR showed high intensity reflection peaks indexed as (004), (105) and (006) planes in the aligning direction, due the texture inducement in c-axis of the main phase (Nd2Fe14B). However, SEM micrographs of c-HDDR powder showed a more homogeneous microstructure, with grain size of ~300 nm, when compared to d-HDDR powder that ranged from 300 nm to 500 nm. This difference is assumed to be the cause of lower intrinsic coercivity found in the c-HDDR powder.</abstract><cop>Pfaffikon</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.899.563</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0255-5476
ispartof Materials science forum, 2017-07, Vol.899, p.563-566
issn 0255-5476
1662-9752
1662-9752
language eng
recordid cdi_proquest_journals_1916850689
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; Scientific.net Journals
subjects Alignment
Alloy development
Alloys
Anisotropy
Bonding strength
Coercivity
Desorption
Disproportionation
Ferrous alloys
Grain size
Hydrogenation
Magnetic materials
Magnetic properties
Magnets
Microstructure
Nanocrystals
Neodymium base alloys
Photomicrographs
Planes
Powder metallurgy
Scanning electron microscopy
X-ray diffraction
title d-HDDR Processing of Nd-Fe-B Based Alloys to Obtain Highly Anisotropic Nanocrystalline Powders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A43%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=d-HDDR%20Processing%20of%20Nd-Fe-B%20Based%20Alloys%20to%20Obtain%20Highly%20Anisotropic%20Nanocrystalline%20Powders&rft.jtitle=Materials%20science%20forum&rft.au=Keller,%20Frederico%20Orlandini&rft.date=2017-07-03&rft.volume=899&rft.spage=563&rft.epage=566&rft.pages=563-566&rft.issn=0255-5476&rft.eissn=1662-9752&rft_id=info:doi/10.4028/www.scientific.net/MSF.899.563&rft_dat=%3Cproquest_cross%3E1916850689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1916850689&rft_id=info:pmid/&rfr_iscdi=true