How to Tame the Aggressiveness of Liquid Silicon in the LSI Process

Liquid Silicon Infiltration (LSI) is a technique to manufacture non-oxide ceramic matrix composites such as C/C-SiC or SiC/SiC. In the beginning of this three-step process, fiber preforms are shaped and impregnated with phenolic resins. After curing, the preforms are pyrolyzed to convert the polymer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2017-07, Vol.742, p.238-245
Hauptverfasser: Watermeyer, Philipp, Mainzer, Bernd, Frieß, Martin, Kelm, Klemens, Koch, Dietmar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 245
container_issue
container_start_page 238
container_title Key engineering materials
container_volume 742
creator Watermeyer, Philipp
Mainzer, Bernd
Frieß, Martin
Kelm, Klemens
Koch, Dietmar
description Liquid Silicon Infiltration (LSI) is a technique to manufacture non-oxide ceramic matrix composites such as C/C-SiC or SiC/SiC. In the beginning of this three-step process, fiber preforms are shaped and impregnated with phenolic resins. After curing, the preforms are pyrolyzed to convert the polymer matrix to a porous carbon matrix. This porosity is then used to infiltrate liquid silicon by capillary forces. Simultaneously, an exothermic reaction of silicon and carbon creates a silicon carbide matrix. Generally the liquid silicon reacts with any carbon and even with SiC present in the form of fibers, fiber coatings or matrix. Therefore, especially the fibers must be protected from Si attack effectively. The morphology of silicon carbide was observed to be heavily driven by Ostwald ripening. This can be suppressed by the addition of boron to the melt. The initially formed SiC crystals in C/C-SiC composites are hereby prevented from grain coarsening, resulting in almost completely preserved C/C blocks. For the manufacture of SiC/SiC composites, the silicon boron alloys allow an effective preservation of the nanocrystalline SiC-fibers. Thus, the use of Si based B containing alloys helps effectively to moderate and control the aggressive reaction during LSI process.
doi_str_mv 10.4028/www.scientific.net/KEM.742.238
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1916848834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1916848834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2718-5b8faf8058eac1af410e10ddd71c3fb30f92719fa5dcfafcb601c90fa3008ef63</originalsourceid><addsrcrecordid>eNqNkM1KAzEURoMoWKvvEBDczTSZzE-yEUuptjii0LoOaSZpU9qkTaYdfHujFXTp6t7F4XxwALjDKM1RRgdd16VBGmVbo41MrWoHz-OXtMqzNCP0DPRwWWYJq1hxHn-EScJoVl6CqxDWCBFMcdEDo4nrYOvgXGwVbFcKDpdLr0IwR2XjgU7D2uwPpoEzszHSWWjsN1fPpvDNOxmha3ChxSaom5_bB--P4_loktSvT9PRsE5kVmGaFAuqhaaooEpILHSOkcKoaZoKS6IXBGkWOaZF0cgIykWJsGRIC4IQVbokfXB78u682x9UaPnaHbyNkxwzXNKcUpJH6v5ESe9C8ErznTdb4T84RvwrHI_h-G84HsPxGI7HcDyGi4KHk6D1woZWydWfnf8pPgGhkH9C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916848834</pqid></control><display><type>article</type><title>How to Tame the Aggressiveness of Liquid Silicon in the LSI Process</title><source>Scientific.net Journals</source><creator>Watermeyer, Philipp ; Mainzer, Bernd ; Frieß, Martin ; Kelm, Klemens ; Koch, Dietmar</creator><creatorcontrib>Watermeyer, Philipp ; Mainzer, Bernd ; Frieß, Martin ; Kelm, Klemens ; Koch, Dietmar</creatorcontrib><description>Liquid Silicon Infiltration (LSI) is a technique to manufacture non-oxide ceramic matrix composites such as C/C-SiC or SiC/SiC. In the beginning of this three-step process, fiber preforms are shaped and impregnated with phenolic resins. After curing, the preforms are pyrolyzed to convert the polymer matrix to a porous carbon matrix. This porosity is then used to infiltrate liquid silicon by capillary forces. Simultaneously, an exothermic reaction of silicon and carbon creates a silicon carbide matrix. Generally the liquid silicon reacts with any carbon and even with SiC present in the form of fibers, fiber coatings or matrix. Therefore, especially the fibers must be protected from Si attack effectively. The morphology of silicon carbide was observed to be heavily driven by Ostwald ripening. This can be suppressed by the addition of boron to the melt. The initially formed SiC crystals in C/C-SiC composites are hereby prevented from grain coarsening, resulting in almost completely preserved C/C blocks. For the manufacture of SiC/SiC composites, the silicon boron alloys allow an effective preservation of the nanocrystalline SiC-fibers. Thus, the use of Si based B containing alloys helps effectively to moderate and control the aggressive reaction during LSI process.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.742.238</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Alloys ; Boron alloys ; Boron fibers ; Carbon ; Carbon fiber reinforced plastics ; Ceramic matrix composites ; Ceramics ; Coarsening ; Curing ; Exothermic reactions ; Fiber coatings ; Fiber preforms ; Fibers ; Infiltration ; Nanocrystals ; Ostwald ripening ; Phenolic resins ; Porosity ; Protective coatings ; Silicon base alloys ; Silicon carbide</subject><ispartof>Key engineering materials, 2017-07, Vol.742, p.238-245</ispartof><rights>2017 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jul 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2718-5b8faf8058eac1af410e10ddd71c3fb30f92719fa5dcfafcb601c90fa3008ef63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4549?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Watermeyer, Philipp</creatorcontrib><creatorcontrib>Mainzer, Bernd</creatorcontrib><creatorcontrib>Frieß, Martin</creatorcontrib><creatorcontrib>Kelm, Klemens</creatorcontrib><creatorcontrib>Koch, Dietmar</creatorcontrib><title>How to Tame the Aggressiveness of Liquid Silicon in the LSI Process</title><title>Key engineering materials</title><description>Liquid Silicon Infiltration (LSI) is a technique to manufacture non-oxide ceramic matrix composites such as C/C-SiC or SiC/SiC. In the beginning of this three-step process, fiber preforms are shaped and impregnated with phenolic resins. After curing, the preforms are pyrolyzed to convert the polymer matrix to a porous carbon matrix. This porosity is then used to infiltrate liquid silicon by capillary forces. Simultaneously, an exothermic reaction of silicon and carbon creates a silicon carbide matrix. Generally the liquid silicon reacts with any carbon and even with SiC present in the form of fibers, fiber coatings or matrix. Therefore, especially the fibers must be protected from Si attack effectively. The morphology of silicon carbide was observed to be heavily driven by Ostwald ripening. This can be suppressed by the addition of boron to the melt. The initially formed SiC crystals in C/C-SiC composites are hereby prevented from grain coarsening, resulting in almost completely preserved C/C blocks. For the manufacture of SiC/SiC composites, the silicon boron alloys allow an effective preservation of the nanocrystalline SiC-fibers. Thus, the use of Si based B containing alloys helps effectively to moderate and control the aggressive reaction during LSI process.</description><subject>Alloys</subject><subject>Boron alloys</subject><subject>Boron fibers</subject><subject>Carbon</subject><subject>Carbon fiber reinforced plastics</subject><subject>Ceramic matrix composites</subject><subject>Ceramics</subject><subject>Coarsening</subject><subject>Curing</subject><subject>Exothermic reactions</subject><subject>Fiber coatings</subject><subject>Fiber preforms</subject><subject>Fibers</subject><subject>Infiltration</subject><subject>Nanocrystals</subject><subject>Ostwald ripening</subject><subject>Phenolic resins</subject><subject>Porosity</subject><subject>Protective coatings</subject><subject>Silicon base alloys</subject><subject>Silicon carbide</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkM1KAzEURoMoWKvvEBDczTSZzE-yEUuptjii0LoOaSZpU9qkTaYdfHujFXTp6t7F4XxwALjDKM1RRgdd16VBGmVbo41MrWoHz-OXtMqzNCP0DPRwWWYJq1hxHn-EScJoVl6CqxDWCBFMcdEDo4nrYOvgXGwVbFcKDpdLr0IwR2XjgU7D2uwPpoEzszHSWWjsN1fPpvDNOxmha3ChxSaom5_bB--P4_loktSvT9PRsE5kVmGaFAuqhaaooEpILHSOkcKoaZoKS6IXBGkWOaZF0cgIykWJsGRIC4IQVbokfXB78u682x9UaPnaHbyNkxwzXNKcUpJH6v5ESe9C8ErznTdb4T84RvwrHI_h-G84HsPxGI7HcDyGi4KHk6D1woZWydWfnf8pPgGhkH9C</recordid><startdate>20170703</startdate><enddate>20170703</enddate><creator>Watermeyer, Philipp</creator><creator>Mainzer, Bernd</creator><creator>Frieß, Martin</creator><creator>Kelm, Klemens</creator><creator>Koch, Dietmar</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170703</creationdate><title>How to Tame the Aggressiveness of Liquid Silicon in the LSI Process</title><author>Watermeyer, Philipp ; Mainzer, Bernd ; Frieß, Martin ; Kelm, Klemens ; Koch, Dietmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2718-5b8faf8058eac1af410e10ddd71c3fb30f92719fa5dcfafcb601c90fa3008ef63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloys</topic><topic>Boron alloys</topic><topic>Boron fibers</topic><topic>Carbon</topic><topic>Carbon fiber reinforced plastics</topic><topic>Ceramic matrix composites</topic><topic>Ceramics</topic><topic>Coarsening</topic><topic>Curing</topic><topic>Exothermic reactions</topic><topic>Fiber coatings</topic><topic>Fiber preforms</topic><topic>Fibers</topic><topic>Infiltration</topic><topic>Nanocrystals</topic><topic>Ostwald ripening</topic><topic>Phenolic resins</topic><topic>Porosity</topic><topic>Protective coatings</topic><topic>Silicon base alloys</topic><topic>Silicon carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watermeyer, Philipp</creatorcontrib><creatorcontrib>Mainzer, Bernd</creatorcontrib><creatorcontrib>Frieß, Martin</creatorcontrib><creatorcontrib>Kelm, Klemens</creatorcontrib><creatorcontrib>Koch, Dietmar</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watermeyer, Philipp</au><au>Mainzer, Bernd</au><au>Frieß, Martin</au><au>Kelm, Klemens</au><au>Koch, Dietmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to Tame the Aggressiveness of Liquid Silicon in the LSI Process</atitle><jtitle>Key engineering materials</jtitle><date>2017-07-03</date><risdate>2017</risdate><volume>742</volume><spage>238</spage><epage>245</epage><pages>238-245</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>Liquid Silicon Infiltration (LSI) is a technique to manufacture non-oxide ceramic matrix composites such as C/C-SiC or SiC/SiC. In the beginning of this three-step process, fiber preforms are shaped and impregnated with phenolic resins. After curing, the preforms are pyrolyzed to convert the polymer matrix to a porous carbon matrix. This porosity is then used to infiltrate liquid silicon by capillary forces. Simultaneously, an exothermic reaction of silicon and carbon creates a silicon carbide matrix. Generally the liquid silicon reacts with any carbon and even with SiC present in the form of fibers, fiber coatings or matrix. Therefore, especially the fibers must be protected from Si attack effectively. The morphology of silicon carbide was observed to be heavily driven by Ostwald ripening. This can be suppressed by the addition of boron to the melt. The initially formed SiC crystals in C/C-SiC composites are hereby prevented from grain coarsening, resulting in almost completely preserved C/C blocks. For the manufacture of SiC/SiC composites, the silicon boron alloys allow an effective preservation of the nanocrystalline SiC-fibers. Thus, the use of Si based B containing alloys helps effectively to moderate and control the aggressive reaction during LSI process.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.742.238</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1013-9826
ispartof Key engineering materials, 2017-07, Vol.742, p.238-245
issn 1013-9826
1662-9795
1662-9795
language eng
recordid cdi_proquest_journals_1916848834
source Scientific.net Journals
subjects Alloys
Boron alloys
Boron fibers
Carbon
Carbon fiber reinforced plastics
Ceramic matrix composites
Ceramics
Coarsening
Curing
Exothermic reactions
Fiber coatings
Fiber preforms
Fibers
Infiltration
Nanocrystals
Ostwald ripening
Phenolic resins
Porosity
Protective coatings
Silicon base alloys
Silicon carbide
title How to Tame the Aggressiveness of Liquid Silicon in the LSI Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20Tame%20the%20Aggressiveness%20of%20Liquid%20Silicon%20in%20the%20LSI%20Process&rft.jtitle=Key%20engineering%20materials&rft.au=Watermeyer,%20Philipp&rft.date=2017-07-03&rft.volume=742&rft.spage=238&rft.epage=245&rft.pages=238-245&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/www.scientific.net/KEM.742.238&rft_dat=%3Cproquest_cross%3E1916848834%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1916848834&rft_id=info:pmid/&rfr_iscdi=true