Developing a decision support system for improving sustainability performance of manufacturing processes

It is difficult to formulate and solve optimization problems for sustainability performance in manufacturing. The main reasons for this are: (1) optimization problems are typically complex and involve manufacturing and sustainability aspects, (2) these problems require diversity of manufacturing dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent manufacturing 2017-08, Vol.28 (6), p.1421-1440
Hauptverfasser: Shin, Seung-Jun, Kim, Duck Bong, Shao, Guodong, Brodsky, Alexander, Lechevalier, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1440
container_issue 6
container_start_page 1421
container_title Journal of intelligent manufacturing
container_volume 28
creator Shin, Seung-Jun
Kim, Duck Bong
Shao, Guodong
Brodsky, Alexander
Lechevalier, David
description It is difficult to formulate and solve optimization problems for sustainability performance in manufacturing. The main reasons for this are: (1) optimization problems are typically complex and involve manufacturing and sustainability aspects, (2) these problems require diversity of manufacturing data, (3) optimization modeling and solving tasks require specialized expertise and programming skills, (4) the use of a different optimization application requires re-modeling of optimization problems even for the same problem, and (5) these optimization models are not decomposed nor reusable. This paper presents the development of a decision support system (DSS) that enables manufacturers to formulate optimization problems at multiple manufacturing levels, to represent various manufacturing data, to create compatible and reusable models and to derive easily optimal solutions for improving sustainability performance. We have implemented a DSS prototype system and applied this system to two case studies. The case studies demonstrate how to allocate resources at the production level and how to select process parameters at the unit-process level to achieve minimal energy consumption. The research of this paper will help reduce time and effort for enhancing sustainability performance without heavily relying on optimization expertise.
doi_str_mv 10.1007/s10845-015-1059-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1916630757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1916630757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-4727275a5f27027c439a1f6ae15774913dcad15929f8519e36f8e8b6e44a590b3</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwHP0czuJtkcpX5CwYueQ7pNNKW7WTO7hfbXm6UevMgcZmDeB-8Rcg38FjhXdwi8rgTjIBhwodnhhMxAqILVUIlTMuNaSCYEiHNygbjhnOtawox8Pbid28Y-dJ_U0rVrAobYURz7PqaB4h4H11IfEw1tn-JuwuGIgw2dXYVtGPa0dyn_W9s1jkZP8zF62wxjmrCZ0zhEh5fkzNstuqvfPScfT4_vixe2fHt-XdwvWVNKPbBKFXmEFb5QvFBNVWoLXlqXw6hKQ7lu7BqELrSvBWhXSl-7eiVdVVmh-aqck5ujbnb-Hh0OZhPH1GVLAxqkLLkSKqPgiGpSREzOmz6F1qa9AW6mQs2xUJMLNVOh5pA5xZGD_RTNpT_K_5J-AOHSeyM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916630757</pqid></control><display><type>article</type><title>Developing a decision support system for improving sustainability performance of manufacturing processes</title><source>Springer Online Journals Complete</source><creator>Shin, Seung-Jun ; Kim, Duck Bong ; Shao, Guodong ; Brodsky, Alexander ; Lechevalier, David</creator><creatorcontrib>Shin, Seung-Jun ; Kim, Duck Bong ; Shao, Guodong ; Brodsky, Alexander ; Lechevalier, David</creatorcontrib><description>It is difficult to formulate and solve optimization problems for sustainability performance in manufacturing. The main reasons for this are: (1) optimization problems are typically complex and involve manufacturing and sustainability aspects, (2) these problems require diversity of manufacturing data, (3) optimization modeling and solving tasks require specialized expertise and programming skills, (4) the use of a different optimization application requires re-modeling of optimization problems even for the same problem, and (5) these optimization models are not decomposed nor reusable. This paper presents the development of a decision support system (DSS) that enables manufacturers to formulate optimization problems at multiple manufacturing levels, to represent various manufacturing data, to create compatible and reusable models and to derive easily optimal solutions for improving sustainability performance. We have implemented a DSS prototype system and applied this system to two case studies. The case studies demonstrate how to allocate resources at the production level and how to select process parameters at the unit-process level to achieve minimal energy consumption. The research of this paper will help reduce time and effort for enhancing sustainability performance without heavily relying on optimization expertise.</description><identifier>ISSN: 0956-5515</identifier><identifier>EISSN: 1572-8145</identifier><identifier>DOI: 10.1007/s10845-015-1059-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Business and Management ; Case studies ; Control ; Decision support systems ; Energy consumption ; Machines ; Manufacturing ; Manufacturing industry ; Mechatronics ; Modelling ; Optimization ; Process parameters ; Processes ; Production ; Resource allocation ; Robotics ; Studies ; Sustainability</subject><ispartof>Journal of intelligent manufacturing, 2017-08, Vol.28 (6), p.1421-1440</ispartof><rights>Springer Science+Business Media New York (outside the USA) 2015</rights><rights>Journal of Intelligent Manufacturing is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-4727275a5f27027c439a1f6ae15774913dcad15929f8519e36f8e8b6e44a590b3</citedby><cites>FETCH-LOGICAL-c369t-4727275a5f27027c439a1f6ae15774913dcad15929f8519e36f8e8b6e44a590b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10845-015-1059-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10845-015-1059-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Shin, Seung-Jun</creatorcontrib><creatorcontrib>Kim, Duck Bong</creatorcontrib><creatorcontrib>Shao, Guodong</creatorcontrib><creatorcontrib>Brodsky, Alexander</creatorcontrib><creatorcontrib>Lechevalier, David</creatorcontrib><title>Developing a decision support system for improving sustainability performance of manufacturing processes</title><title>Journal of intelligent manufacturing</title><addtitle>J Intell Manuf</addtitle><description>It is difficult to formulate and solve optimization problems for sustainability performance in manufacturing. The main reasons for this are: (1) optimization problems are typically complex and involve manufacturing and sustainability aspects, (2) these problems require diversity of manufacturing data, (3) optimization modeling and solving tasks require specialized expertise and programming skills, (4) the use of a different optimization application requires re-modeling of optimization problems even for the same problem, and (5) these optimization models are not decomposed nor reusable. This paper presents the development of a decision support system (DSS) that enables manufacturers to formulate optimization problems at multiple manufacturing levels, to represent various manufacturing data, to create compatible and reusable models and to derive easily optimal solutions for improving sustainability performance. We have implemented a DSS prototype system and applied this system to two case studies. The case studies demonstrate how to allocate resources at the production level and how to select process parameters at the unit-process level to achieve minimal energy consumption. The research of this paper will help reduce time and effort for enhancing sustainability performance without heavily relying on optimization expertise.</description><subject>Business and Management</subject><subject>Case studies</subject><subject>Control</subject><subject>Decision support systems</subject><subject>Energy consumption</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Manufacturing industry</subject><subject>Mechatronics</subject><subject>Modelling</subject><subject>Optimization</subject><subject>Process parameters</subject><subject>Processes</subject><subject>Production</subject><subject>Resource allocation</subject><subject>Robotics</subject><subject>Studies</subject><subject>Sustainability</subject><issn>0956-5515</issn><issn>1572-8145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UE1LAzEQDaJgrf4AbwHP0czuJtkcpX5CwYueQ7pNNKW7WTO7hfbXm6UevMgcZmDeB-8Rcg38FjhXdwi8rgTjIBhwodnhhMxAqILVUIlTMuNaSCYEiHNygbjhnOtawox8Pbid28Y-dJ_U0rVrAobYURz7PqaB4h4H11IfEw1tn-JuwuGIgw2dXYVtGPa0dyn_W9s1jkZP8zF62wxjmrCZ0zhEh5fkzNstuqvfPScfT4_vixe2fHt-XdwvWVNKPbBKFXmEFb5QvFBNVWoLXlqXw6hKQ7lu7BqELrSvBWhXSl-7eiVdVVmh-aqck5ujbnb-Hh0OZhPH1GVLAxqkLLkSKqPgiGpSREzOmz6F1qa9AW6mQs2xUJMLNVOh5pA5xZGD_RTNpT_K_5J-AOHSeyM</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Shin, Seung-Jun</creator><creator>Kim, Duck Bong</creator><creator>Shao, Guodong</creator><creator>Brodsky, Alexander</creator><creator>Lechevalier, David</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20170801</creationdate><title>Developing a decision support system for improving sustainability performance of manufacturing processes</title><author>Shin, Seung-Jun ; Kim, Duck Bong ; Shao, Guodong ; Brodsky, Alexander ; Lechevalier, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-4727275a5f27027c439a1f6ae15774913dcad15929f8519e36f8e8b6e44a590b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Business and Management</topic><topic>Case studies</topic><topic>Control</topic><topic>Decision support systems</topic><topic>Energy consumption</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Manufacturing industry</topic><topic>Mechatronics</topic><topic>Modelling</topic><topic>Optimization</topic><topic>Process parameters</topic><topic>Processes</topic><topic>Production</topic><topic>Resource allocation</topic><topic>Robotics</topic><topic>Studies</topic><topic>Sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Seung-Jun</creatorcontrib><creatorcontrib>Kim, Duck Bong</creatorcontrib><creatorcontrib>Shao, Guodong</creatorcontrib><creatorcontrib>Brodsky, Alexander</creatorcontrib><creatorcontrib>Lechevalier, David</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Seung-Jun</au><au>Kim, Duck Bong</au><au>Shao, Guodong</au><au>Brodsky, Alexander</au><au>Lechevalier, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developing a decision support system for improving sustainability performance of manufacturing processes</atitle><jtitle>Journal of intelligent manufacturing</jtitle><stitle>J Intell Manuf</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>28</volume><issue>6</issue><spage>1421</spage><epage>1440</epage><pages>1421-1440</pages><issn>0956-5515</issn><eissn>1572-8145</eissn><abstract>It is difficult to formulate and solve optimization problems for sustainability performance in manufacturing. The main reasons for this are: (1) optimization problems are typically complex and involve manufacturing and sustainability aspects, (2) these problems require diversity of manufacturing data, (3) optimization modeling and solving tasks require specialized expertise and programming skills, (4) the use of a different optimization application requires re-modeling of optimization problems even for the same problem, and (5) these optimization models are not decomposed nor reusable. This paper presents the development of a decision support system (DSS) that enables manufacturers to formulate optimization problems at multiple manufacturing levels, to represent various manufacturing data, to create compatible and reusable models and to derive easily optimal solutions for improving sustainability performance. We have implemented a DSS prototype system and applied this system to two case studies. The case studies demonstrate how to allocate resources at the production level and how to select process parameters at the unit-process level to achieve minimal energy consumption. The research of this paper will help reduce time and effort for enhancing sustainability performance without heavily relying on optimization expertise.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10845-015-1059-z</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-5515
ispartof Journal of intelligent manufacturing, 2017-08, Vol.28 (6), p.1421-1440
issn 0956-5515
1572-8145
language eng
recordid cdi_proquest_journals_1916630757
source Springer Online Journals Complete
subjects Business and Management
Case studies
Control
Decision support systems
Energy consumption
Machines
Manufacturing
Manufacturing industry
Mechatronics
Modelling
Optimization
Process parameters
Processes
Production
Resource allocation
Robotics
Studies
Sustainability
title Developing a decision support system for improving sustainability performance of manufacturing processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T18%3A29%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developing%20a%20decision%20support%20system%20for%20improving%20sustainability%20performance%20of%20manufacturing%20processes&rft.jtitle=Journal%20of%20intelligent%20manufacturing&rft.au=Shin,%20Seung-Jun&rft.date=2017-08-01&rft.volume=28&rft.issue=6&rft.spage=1421&rft.epage=1440&rft.pages=1421-1440&rft.issn=0956-5515&rft.eissn=1572-8145&rft_id=info:doi/10.1007/s10845-015-1059-z&rft_dat=%3Cproquest_cross%3E1916630757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1916630757&rft_id=info:pmid/&rfr_iscdi=true