Developing a decision support system for improving sustainability performance of manufacturing processes
It is difficult to formulate and solve optimization problems for sustainability performance in manufacturing. The main reasons for this are: (1) optimization problems are typically complex and involve manufacturing and sustainability aspects, (2) these problems require diversity of manufacturing dat...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent manufacturing 2017-08, Vol.28 (6), p.1421-1440 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1440 |
---|---|
container_issue | 6 |
container_start_page | 1421 |
container_title | Journal of intelligent manufacturing |
container_volume | 28 |
creator | Shin, Seung-Jun Kim, Duck Bong Shao, Guodong Brodsky, Alexander Lechevalier, David |
description | It is difficult to formulate and solve optimization problems for sustainability performance in manufacturing. The main reasons for this are: (1) optimization problems are typically complex and involve manufacturing and sustainability aspects, (2) these problems require diversity of manufacturing data, (3) optimization modeling and solving tasks require specialized expertise and programming skills, (4) the use of a different optimization application requires re-modeling of optimization problems even for the same problem, and (5) these optimization models are not decomposed nor reusable. This paper presents the development of a decision support system (DSS) that enables manufacturers to formulate optimization problems at multiple manufacturing levels, to represent various manufacturing data, to create compatible and reusable models and to derive easily optimal solutions for improving sustainability performance. We have implemented a DSS prototype system and applied this system to two case studies. The case studies demonstrate how to allocate resources at the production level and how to select process parameters at the unit-process level to achieve minimal energy consumption. The research of this paper will help reduce time and effort for enhancing sustainability performance without heavily relying on optimization expertise. |
doi_str_mv | 10.1007/s10845-015-1059-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1916630757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1916630757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-4727275a5f27027c439a1f6ae15774913dcad15929f8519e36f8e8b6e44a590b3</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwHP0czuJtkcpX5CwYueQ7pNNKW7WTO7hfbXm6UevMgcZmDeB-8Rcg38FjhXdwi8rgTjIBhwodnhhMxAqILVUIlTMuNaSCYEiHNygbjhnOtawox8Pbid28Y-dJ_U0rVrAobYURz7PqaB4h4H11IfEw1tn-JuwuGIgw2dXYVtGPa0dyn_W9s1jkZP8zF62wxjmrCZ0zhEh5fkzNstuqvfPScfT4_vixe2fHt-XdwvWVNKPbBKFXmEFb5QvFBNVWoLXlqXw6hKQ7lu7BqELrSvBWhXSl-7eiVdVVmh-aqck5ujbnb-Hh0OZhPH1GVLAxqkLLkSKqPgiGpSREzOmz6F1qa9AW6mQs2xUJMLNVOh5pA5xZGD_RTNpT_K_5J-AOHSeyM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916630757</pqid></control><display><type>article</type><title>Developing a decision support system for improving sustainability performance of manufacturing processes</title><source>Springer Online Journals Complete</source><creator>Shin, Seung-Jun ; Kim, Duck Bong ; Shao, Guodong ; Brodsky, Alexander ; Lechevalier, David</creator><creatorcontrib>Shin, Seung-Jun ; Kim, Duck Bong ; Shao, Guodong ; Brodsky, Alexander ; Lechevalier, David</creatorcontrib><description>It is difficult to formulate and solve optimization problems for sustainability performance in manufacturing. The main reasons for this are: (1) optimization problems are typically complex and involve manufacturing and sustainability aspects, (2) these problems require diversity of manufacturing data, (3) optimization modeling and solving tasks require specialized expertise and programming skills, (4) the use of a different optimization application requires re-modeling of optimization problems even for the same problem, and (5) these optimization models are not decomposed nor reusable. This paper presents the development of a decision support system (DSS) that enables manufacturers to formulate optimization problems at multiple manufacturing levels, to represent various manufacturing data, to create compatible and reusable models and to derive easily optimal solutions for improving sustainability performance. We have implemented a DSS prototype system and applied this system to two case studies. The case studies demonstrate how to allocate resources at the production level and how to select process parameters at the unit-process level to achieve minimal energy consumption. The research of this paper will help reduce time and effort for enhancing sustainability performance without heavily relying on optimization expertise.</description><identifier>ISSN: 0956-5515</identifier><identifier>EISSN: 1572-8145</identifier><identifier>DOI: 10.1007/s10845-015-1059-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Business and Management ; Case studies ; Control ; Decision support systems ; Energy consumption ; Machines ; Manufacturing ; Manufacturing industry ; Mechatronics ; Modelling ; Optimization ; Process parameters ; Processes ; Production ; Resource allocation ; Robotics ; Studies ; Sustainability</subject><ispartof>Journal of intelligent manufacturing, 2017-08, Vol.28 (6), p.1421-1440</ispartof><rights>Springer Science+Business Media New York (outside the USA) 2015</rights><rights>Journal of Intelligent Manufacturing is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-4727275a5f27027c439a1f6ae15774913dcad15929f8519e36f8e8b6e44a590b3</citedby><cites>FETCH-LOGICAL-c369t-4727275a5f27027c439a1f6ae15774913dcad15929f8519e36f8e8b6e44a590b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10845-015-1059-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10845-015-1059-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Shin, Seung-Jun</creatorcontrib><creatorcontrib>Kim, Duck Bong</creatorcontrib><creatorcontrib>Shao, Guodong</creatorcontrib><creatorcontrib>Brodsky, Alexander</creatorcontrib><creatorcontrib>Lechevalier, David</creatorcontrib><title>Developing a decision support system for improving sustainability performance of manufacturing processes</title><title>Journal of intelligent manufacturing</title><addtitle>J Intell Manuf</addtitle><description>It is difficult to formulate and solve optimization problems for sustainability performance in manufacturing. The main reasons for this are: (1) optimization problems are typically complex and involve manufacturing and sustainability aspects, (2) these problems require diversity of manufacturing data, (3) optimization modeling and solving tasks require specialized expertise and programming skills, (4) the use of a different optimization application requires re-modeling of optimization problems even for the same problem, and (5) these optimization models are not decomposed nor reusable. This paper presents the development of a decision support system (DSS) that enables manufacturers to formulate optimization problems at multiple manufacturing levels, to represent various manufacturing data, to create compatible and reusable models and to derive easily optimal solutions for improving sustainability performance. We have implemented a DSS prototype system and applied this system to two case studies. The case studies demonstrate how to allocate resources at the production level and how to select process parameters at the unit-process level to achieve minimal energy consumption. The research of this paper will help reduce time and effort for enhancing sustainability performance without heavily relying on optimization expertise.</description><subject>Business and Management</subject><subject>Case studies</subject><subject>Control</subject><subject>Decision support systems</subject><subject>Energy consumption</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Manufacturing industry</subject><subject>Mechatronics</subject><subject>Modelling</subject><subject>Optimization</subject><subject>Process parameters</subject><subject>Processes</subject><subject>Production</subject><subject>Resource allocation</subject><subject>Robotics</subject><subject>Studies</subject><subject>Sustainability</subject><issn>0956-5515</issn><issn>1572-8145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UE1LAzEQDaJgrf4AbwHP0czuJtkcpX5CwYueQ7pNNKW7WTO7hfbXm6UevMgcZmDeB-8Rcg38FjhXdwi8rgTjIBhwodnhhMxAqILVUIlTMuNaSCYEiHNygbjhnOtawox8Pbid28Y-dJ_U0rVrAobYURz7PqaB4h4H11IfEw1tn-JuwuGIgw2dXYVtGPa0dyn_W9s1jkZP8zF62wxjmrCZ0zhEh5fkzNstuqvfPScfT4_vixe2fHt-XdwvWVNKPbBKFXmEFb5QvFBNVWoLXlqXw6hKQ7lu7BqELrSvBWhXSl-7eiVdVVmh-aqck5ujbnb-Hh0OZhPH1GVLAxqkLLkSKqPgiGpSREzOmz6F1qa9AW6mQs2xUJMLNVOh5pA5xZGD_RTNpT_K_5J-AOHSeyM</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Shin, Seung-Jun</creator><creator>Kim, Duck Bong</creator><creator>Shao, Guodong</creator><creator>Brodsky, Alexander</creator><creator>Lechevalier, David</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20170801</creationdate><title>Developing a decision support system for improving sustainability performance of manufacturing processes</title><author>Shin, Seung-Jun ; Kim, Duck Bong ; Shao, Guodong ; Brodsky, Alexander ; Lechevalier, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-4727275a5f27027c439a1f6ae15774913dcad15929f8519e36f8e8b6e44a590b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Business and Management</topic><topic>Case studies</topic><topic>Control</topic><topic>Decision support systems</topic><topic>Energy consumption</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Manufacturing industry</topic><topic>Mechatronics</topic><topic>Modelling</topic><topic>Optimization</topic><topic>Process parameters</topic><topic>Processes</topic><topic>Production</topic><topic>Resource allocation</topic><topic>Robotics</topic><topic>Studies</topic><topic>Sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Seung-Jun</creatorcontrib><creatorcontrib>Kim, Duck Bong</creatorcontrib><creatorcontrib>Shao, Guodong</creatorcontrib><creatorcontrib>Brodsky, Alexander</creatorcontrib><creatorcontrib>Lechevalier, David</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Seung-Jun</au><au>Kim, Duck Bong</au><au>Shao, Guodong</au><au>Brodsky, Alexander</au><au>Lechevalier, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developing a decision support system for improving sustainability performance of manufacturing processes</atitle><jtitle>Journal of intelligent manufacturing</jtitle><stitle>J Intell Manuf</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>28</volume><issue>6</issue><spage>1421</spage><epage>1440</epage><pages>1421-1440</pages><issn>0956-5515</issn><eissn>1572-8145</eissn><abstract>It is difficult to formulate and solve optimization problems for sustainability performance in manufacturing. The main reasons for this are: (1) optimization problems are typically complex and involve manufacturing and sustainability aspects, (2) these problems require diversity of manufacturing data, (3) optimization modeling and solving tasks require specialized expertise and programming skills, (4) the use of a different optimization application requires re-modeling of optimization problems even for the same problem, and (5) these optimization models are not decomposed nor reusable. This paper presents the development of a decision support system (DSS) that enables manufacturers to formulate optimization problems at multiple manufacturing levels, to represent various manufacturing data, to create compatible and reusable models and to derive easily optimal solutions for improving sustainability performance. We have implemented a DSS prototype system and applied this system to two case studies. The case studies demonstrate how to allocate resources at the production level and how to select process parameters at the unit-process level to achieve minimal energy consumption. The research of this paper will help reduce time and effort for enhancing sustainability performance without heavily relying on optimization expertise.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10845-015-1059-z</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5515 |
ispartof | Journal of intelligent manufacturing, 2017-08, Vol.28 (6), p.1421-1440 |
issn | 0956-5515 1572-8145 |
language | eng |
recordid | cdi_proquest_journals_1916630757 |
source | Springer Online Journals Complete |
subjects | Business and Management Case studies Control Decision support systems Energy consumption Machines Manufacturing Manufacturing industry Mechatronics Modelling Optimization Process parameters Processes Production Resource allocation Robotics Studies Sustainability |
title | Developing a decision support system for improving sustainability performance of manufacturing processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T18%3A29%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developing%20a%20decision%20support%20system%20for%20improving%20sustainability%20performance%20of%20manufacturing%20processes&rft.jtitle=Journal%20of%20intelligent%20manufacturing&rft.au=Shin,%20Seung-Jun&rft.date=2017-08-01&rft.volume=28&rft.issue=6&rft.spage=1421&rft.epage=1440&rft.pages=1421-1440&rft.issn=0956-5515&rft.eissn=1572-8145&rft_id=info:doi/10.1007/s10845-015-1059-z&rft_dat=%3Cproquest_cross%3E1916630757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1916630757&rft_id=info:pmid/&rfr_iscdi=true |