Agent-Based Modeling: A Guide for Social Psychologists
Agent-based modeling is a long-standing but underused method that allows researchers to simulate artificial worlds for hypothesis testing and theory building. Agent-based models (ABMs) offer unprecedented control and statistical power by allowing researchers to precisely specify the behavior of any...
Gespeichert in:
Veröffentlicht in: | Social psychological & personality science 2017-05, Vol.8 (4), p.387-395 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 395 |
---|---|
container_issue | 4 |
container_start_page | 387 |
container_title | Social psychological & personality science |
container_volume | 8 |
creator | Jackson, Joshua Conrad Rand, David Lewis, Kevin Norton, Michael I. Gray, Kurt |
description | Agent-based modeling is a long-standing but underused method that allows researchers to simulate artificial worlds for hypothesis testing and theory building. Agent-based models (ABMs) offer unprecedented control and statistical power by allowing researchers to precisely specify the behavior of any number of agents and observe their interactions over time. ABMs are especially useful when investigating group behavior or evolutionary processes and can uniquely reveal nonlinear dynamics and emergence—the process whereby local interactions aggregate into often-surprising collective phenomena such as spatial segregation and relational homophily. We review several illustrative ABMs, describe the strengths and limitations of this method, and address two misconceptions about ABMs: reductionism and “you get out what you put in.” We also offer maxims for good and bad ABMs, give practical tips for beginner modelers, and include a list of resources and other models. We conclude with a seven-step guide to creating your own model. |
doi_str_mv | 10.1177/1948550617691100 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1916617252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1948550617691100</sage_id><sourcerecordid>1916617252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-7cec018dc9eaa666346b3e09448c99c33fd6d904d3dcfa7aaf9d989fffbe30273</originalsourceid><addsrcrecordid>eNp1j81LAzEQxYMoWGpvHjwKnqMzm2SyOdbiF1S86Dmk-Vha6m5Ntgf_e7esiAjOZYbh997jMXaBcI2o9Q0aWSsFhJoMIsARmxxeXCmUxz830CmblbKBYSQJoXDCzudNbHt-60oMl89diNt125yxk-S2Jc6-95S93d-9Lh758uXhaTFfcl9R1XPtowesgzfROSISklYigpGy9sZ4IVKgYEAGEXxy2rlkgqlNSmkVBVRaTNnV6LvL3cc-lt5uun1uh0iLBmmoU6lqoGCkfO5KyTHZXV6_u_xpEeyhvv1bf5DwUVJcE3-Z_sd_ATdOVyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916617252</pqid></control><display><type>article</type><title>Agent-Based Modeling: A Guide for Social Psychologists</title><source>Sociological Abstracts</source><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>SAGE Complete A-Z List</source><creator>Jackson, Joshua Conrad ; Rand, David ; Lewis, Kevin ; Norton, Michael I. ; Gray, Kurt</creator><creatorcontrib>Jackson, Joshua Conrad ; Rand, David ; Lewis, Kevin ; Norton, Michael I. ; Gray, Kurt</creatorcontrib><description>Agent-based modeling is a long-standing but underused method that allows researchers to simulate artificial worlds for hypothesis testing and theory building. Agent-based models (ABMs) offer unprecedented control and statistical power by allowing researchers to precisely specify the behavior of any number of agents and observe their interactions over time. ABMs are especially useful when investigating group behavior or evolutionary processes and can uniquely reveal nonlinear dynamics and emergence—the process whereby local interactions aggregate into often-surprising collective phenomena such as spatial segregation and relational homophily. We review several illustrative ABMs, describe the strengths and limitations of this method, and address two misconceptions about ABMs: reductionism and “you get out what you put in.” We also offer maxims for good and bad ABMs, give practical tips for beginner modelers, and include a list of resources and other models. We conclude with a seven-step guide to creating your own model.</description><identifier>ISSN: 1948-5506</identifier><identifier>EISSN: 1948-5514</identifier><identifier>DOI: 10.1177/1948550617691100</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Agents ; Group dynamics ; Hypothesis testing ; Misconceptions ; Reductionism ; Researchers ; Segregation ; Statistical power</subject><ispartof>Social psychological & personality science, 2017-05, Vol.8 (4), p.387-395</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c262t-7cec018dc9eaa666346b3e09448c99c33fd6d904d3dcfa7aaf9d989fffbe30273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1948550617691100$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1948550617691100$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,30999,33774,43621,43622</link.rule.ids></links><search><creatorcontrib>Jackson, Joshua Conrad</creatorcontrib><creatorcontrib>Rand, David</creatorcontrib><creatorcontrib>Lewis, Kevin</creatorcontrib><creatorcontrib>Norton, Michael I.</creatorcontrib><creatorcontrib>Gray, Kurt</creatorcontrib><title>Agent-Based Modeling: A Guide for Social Psychologists</title><title>Social psychological & personality science</title><description>Agent-based modeling is a long-standing but underused method that allows researchers to simulate artificial worlds for hypothesis testing and theory building. Agent-based models (ABMs) offer unprecedented control and statistical power by allowing researchers to precisely specify the behavior of any number of agents and observe their interactions over time. ABMs are especially useful when investigating group behavior or evolutionary processes and can uniquely reveal nonlinear dynamics and emergence—the process whereby local interactions aggregate into often-surprising collective phenomena such as spatial segregation and relational homophily. We review several illustrative ABMs, describe the strengths and limitations of this method, and address two misconceptions about ABMs: reductionism and “you get out what you put in.” We also offer maxims for good and bad ABMs, give practical tips for beginner modelers, and include a list of resources and other models. We conclude with a seven-step guide to creating your own model.</description><subject>Agents</subject><subject>Group dynamics</subject><subject>Hypothesis testing</subject><subject>Misconceptions</subject><subject>Reductionism</subject><subject>Researchers</subject><subject>Segregation</subject><subject>Statistical power</subject><issn>1948-5506</issn><issn>1948-5514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><sourceid>BHHNA</sourceid><recordid>eNp1j81LAzEQxYMoWGpvHjwKnqMzm2SyOdbiF1S86Dmk-Vha6m5Ntgf_e7esiAjOZYbh997jMXaBcI2o9Q0aWSsFhJoMIsARmxxeXCmUxz830CmblbKBYSQJoXDCzudNbHt-60oMl89diNt125yxk-S2Jc6-95S93d-9Lh758uXhaTFfcl9R1XPtowesgzfROSISklYigpGy9sZ4IVKgYEAGEXxy2rlkgqlNSmkVBVRaTNnV6LvL3cc-lt5uun1uh0iLBmmoU6lqoGCkfO5KyTHZXV6_u_xpEeyhvv1bf5DwUVJcE3-Z_sd_ATdOVyg</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Jackson, Joshua Conrad</creator><creator>Rand, David</creator><creator>Lewis, Kevin</creator><creator>Norton, Michael I.</creator><creator>Gray, Kurt</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7U4</scope><scope>BHHNA</scope><scope>DWI</scope><scope>WZK</scope></search><sort><creationdate>201705</creationdate><title>Agent-Based Modeling</title><author>Jackson, Joshua Conrad ; Rand, David ; Lewis, Kevin ; Norton, Michael I. ; Gray, Kurt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-7cec018dc9eaa666346b3e09448c99c33fd6d904d3dcfa7aaf9d989fffbe30273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agents</topic><topic>Group dynamics</topic><topic>Hypothesis testing</topic><topic>Misconceptions</topic><topic>Reductionism</topic><topic>Researchers</topic><topic>Segregation</topic><topic>Statistical power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jackson, Joshua Conrad</creatorcontrib><creatorcontrib>Rand, David</creatorcontrib><creatorcontrib>Lewis, Kevin</creatorcontrib><creatorcontrib>Norton, Michael I.</creatorcontrib><creatorcontrib>Gray, Kurt</creatorcontrib><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Social psychological & personality science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jackson, Joshua Conrad</au><au>Rand, David</au><au>Lewis, Kevin</au><au>Norton, Michael I.</au><au>Gray, Kurt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Agent-Based Modeling: A Guide for Social Psychologists</atitle><jtitle>Social psychological & personality science</jtitle><date>2017-05</date><risdate>2017</risdate><volume>8</volume><issue>4</issue><spage>387</spage><epage>395</epage><pages>387-395</pages><issn>1948-5506</issn><eissn>1948-5514</eissn><abstract>Agent-based modeling is a long-standing but underused method that allows researchers to simulate artificial worlds for hypothesis testing and theory building. Agent-based models (ABMs) offer unprecedented control and statistical power by allowing researchers to precisely specify the behavior of any number of agents and observe their interactions over time. ABMs are especially useful when investigating group behavior or evolutionary processes and can uniquely reveal nonlinear dynamics and emergence—the process whereby local interactions aggregate into often-surprising collective phenomena such as spatial segregation and relational homophily. We review several illustrative ABMs, describe the strengths and limitations of this method, and address two misconceptions about ABMs: reductionism and “you get out what you put in.” We also offer maxims for good and bad ABMs, give practical tips for beginner modelers, and include a list of resources and other models. We conclude with a seven-step guide to creating your own model.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/1948550617691100</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-5506 |
ispartof | Social psychological & personality science, 2017-05, Vol.8 (4), p.387-395 |
issn | 1948-5506 1948-5514 |
language | eng |
recordid | cdi_proquest_journals_1916617252 |
source | Sociological Abstracts; Applied Social Sciences Index & Abstracts (ASSIA); SAGE Complete A-Z List |
subjects | Agents Group dynamics Hypothesis testing Misconceptions Reductionism Researchers Segregation Statistical power |
title | Agent-Based Modeling: A Guide for Social Psychologists |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Agent-Based%20Modeling:%20A%20Guide%20for%20Social%20Psychologists&rft.jtitle=Social%20psychological%20&%20personality%20science&rft.au=Jackson,%20Joshua%20Conrad&rft.date=2017-05&rft.volume=8&rft.issue=4&rft.spage=387&rft.epage=395&rft.pages=387-395&rft.issn=1948-5506&rft.eissn=1948-5514&rft_id=info:doi/10.1177/1948550617691100&rft_dat=%3Cproquest_cross%3E1916617252%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1916617252&rft_id=info:pmid/&rft_sage_id=10.1177_1948550617691100&rfr_iscdi=true |