Development of a Marslander with crushable shock absorber by virtual and experimental testing

Since the beginning of space exploration, probes have been sent to other planets or moons with the associated challenge of landing on these bodies. For a soft landing several damping methods like landing legs or airbags have been used. A new and potentially less complex and lighter way to reduce the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta astronautica 2017-05, Vol.134, p.65-74
Hauptverfasser: Schröder, Silvio, Reinhardt, B., Brauner, C., Gebauer, I., Buchwald, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 74
container_issue
container_start_page 65
container_title Acta astronautica
container_volume 134
creator Schröder, Silvio
Reinhardt, B.
Brauner, C.
Gebauer, I.
Buchwald, R.
description Since the beginning of space exploration, probes have been sent to other planets or moons with the associated challenge of landing on these bodies. For a soft landing several damping methods like landing legs or airbags have been used. A new and potentially less complex and lighter way to reduce the shock loads at touchdown is the use of a crushable shield underneath the lander platform. This crushable shield could be made for example out of an energy absorbing materials like an aluminum honeycomb core with a High Performance Polyethylene cover sheet. The design is particularly advantageous since no moving parts nor other mechanisms are required, thus making the shield very robust and fail safe. The only mission that has used this technique is the ESA/Roscosmos-mission “ExoMars” which started in 2016. The development of such a crushable shock absorber implies and requires assessment of materials, manufacturing processes, the setup of a numerical simulation and the experimental validation in a test lab. In an independent research project (Marslander) a representative engineering mockup of the landing platform has been built and tested at the Landing & Mobility Test Facility (LAMA) to support the numerical simulation model with experimental data. This paper is focusing on the hardware tests. Results of the above stated development and testing processes will be presented and discussed.
doi_str_mv 10.1016/j.actaastro.2017.01.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1916144047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576516307275</els_id><sourcerecordid>1916144047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-a06e9821df5f344613af7a2b2dcfda915cdb9d28e53c75789ebc42012cc5238f3</originalsourceid><addsrcrecordid>eNqFUMlOwzAQtRBIlMI3YIlzgpckjo8Vu1TEBY7IcpwJdQhxsN1C_x5XRVw5jTTzlnkPoXNKckpoddnn2kStQ_QuZ4SKnNCcMH6AZrQWMmOEk0M0I0QWWSmq8hidhNATQgSr5Qy9XsMGBjd9wBix67DGj9qHQY8tePxl4wobvw4r3QyAw8qZd6yb4HyTrs0Wb6yPaz3gBMfwPYG3O520iBCiHd9O0VGnhwBnv3OOXm5vnq_us-XT3cPVYpkZLlnMNKlA1oy2Xdnxoqgo153QrGGt6VotaWnaRrashpIbUYpaQmOKlJUZUzJed3yOLva6k3ef6-Sterf2Y7JUVNKKFgUpREKJPcp4F4KHTk3pYe23ihK161L16q9LtetSEapSl4m52DMhhdhY8CoYC6OB1nowUbXO_qvxA4JUgyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916144047</pqid></control><display><type>article</type><title>Development of a Marslander with crushable shock absorber by virtual and experimental testing</title><source>Elsevier ScienceDirect Journals</source><creator>Schröder, Silvio ; Reinhardt, B. ; Brauner, C. ; Gebauer, I. ; Buchwald, R.</creator><creatorcontrib>Schröder, Silvio ; Reinhardt, B. ; Brauner, C. ; Gebauer, I. ; Buchwald, R.</creatorcontrib><description>Since the beginning of space exploration, probes have been sent to other planets or moons with the associated challenge of landing on these bodies. For a soft landing several damping methods like landing legs or airbags have been used. A new and potentially less complex and lighter way to reduce the shock loads at touchdown is the use of a crushable shield underneath the lander platform. This crushable shield could be made for example out of an energy absorbing materials like an aluminum honeycomb core with a High Performance Polyethylene cover sheet. The design is particularly advantageous since no moving parts nor other mechanisms are required, thus making the shield very robust and fail safe. The only mission that has used this technique is the ESA/Roscosmos-mission “ExoMars” which started in 2016. The development of such a crushable shock absorber implies and requires assessment of materials, manufacturing processes, the setup of a numerical simulation and the experimental validation in a test lab. In an independent research project (Marslander) a representative engineering mockup of the landing platform has been built and tested at the Landing &amp; Mobility Test Facility (LAMA) to support the numerical simulation model with experimental data. This paper is focusing on the hardware tests. Results of the above stated development and testing processes will be presented and discussed.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2017.01.023</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Air bags ; Aluminum ; Computer simulation ; Damping ; Energy absorption ; Engineering ; Experimental data ; Focusing ; Honeycomb construction ; Legs ; Manufacturing industry ; Mars missions ; Mathematical models ; Mobility ; Moon ; Numerical simulations ; Planetary probes ; Planets ; Polyethylenes ; Probes ; Robustness (mathematics) ; Russian Space Program ; Shock loads ; Soft landing ; Space exploration ; Touchdown</subject><ispartof>Acta astronautica, 2017-05, Vol.134, p.65-74</ispartof><rights>2017 IAA</rights><rights>Copyright Elsevier BV May 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-a06e9821df5f344613af7a2b2dcfda915cdb9d28e53c75789ebc42012cc5238f3</citedby><cites>FETCH-LOGICAL-c392t-a06e9821df5f344613af7a2b2dcfda915cdb9d28e53c75789ebc42012cc5238f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actaastro.2017.01.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Schröder, Silvio</creatorcontrib><creatorcontrib>Reinhardt, B.</creatorcontrib><creatorcontrib>Brauner, C.</creatorcontrib><creatorcontrib>Gebauer, I.</creatorcontrib><creatorcontrib>Buchwald, R.</creatorcontrib><title>Development of a Marslander with crushable shock absorber by virtual and experimental testing</title><title>Acta astronautica</title><description>Since the beginning of space exploration, probes have been sent to other planets or moons with the associated challenge of landing on these bodies. For a soft landing several damping methods like landing legs or airbags have been used. A new and potentially less complex and lighter way to reduce the shock loads at touchdown is the use of a crushable shield underneath the lander platform. This crushable shield could be made for example out of an energy absorbing materials like an aluminum honeycomb core with a High Performance Polyethylene cover sheet. The design is particularly advantageous since no moving parts nor other mechanisms are required, thus making the shield very robust and fail safe. The only mission that has used this technique is the ESA/Roscosmos-mission “ExoMars” which started in 2016. The development of such a crushable shock absorber implies and requires assessment of materials, manufacturing processes, the setup of a numerical simulation and the experimental validation in a test lab. In an independent research project (Marslander) a representative engineering mockup of the landing platform has been built and tested at the Landing &amp; Mobility Test Facility (LAMA) to support the numerical simulation model with experimental data. This paper is focusing on the hardware tests. Results of the above stated development and testing processes will be presented and discussed.</description><subject>Air bags</subject><subject>Aluminum</subject><subject>Computer simulation</subject><subject>Damping</subject><subject>Energy absorption</subject><subject>Engineering</subject><subject>Experimental data</subject><subject>Focusing</subject><subject>Honeycomb construction</subject><subject>Legs</subject><subject>Manufacturing industry</subject><subject>Mars missions</subject><subject>Mathematical models</subject><subject>Mobility</subject><subject>Moon</subject><subject>Numerical simulations</subject><subject>Planetary probes</subject><subject>Planets</subject><subject>Polyethylenes</subject><subject>Probes</subject><subject>Robustness (mathematics)</subject><subject>Russian Space Program</subject><subject>Shock loads</subject><subject>Soft landing</subject><subject>Space exploration</subject><subject>Touchdown</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUMlOwzAQtRBIlMI3YIlzgpckjo8Vu1TEBY7IcpwJdQhxsN1C_x5XRVw5jTTzlnkPoXNKckpoddnn2kStQ_QuZ4SKnNCcMH6AZrQWMmOEk0M0I0QWWSmq8hidhNATQgSr5Qy9XsMGBjd9wBix67DGj9qHQY8tePxl4wobvw4r3QyAw8qZd6yb4HyTrs0Wb6yPaz3gBMfwPYG3O520iBCiHd9O0VGnhwBnv3OOXm5vnq_us-XT3cPVYpkZLlnMNKlA1oy2Xdnxoqgo153QrGGt6VotaWnaRrashpIbUYpaQmOKlJUZUzJed3yOLva6k3ef6-Sterf2Y7JUVNKKFgUpREKJPcp4F4KHTk3pYe23ihK161L16q9LtetSEapSl4m52DMhhdhY8CoYC6OB1nowUbXO_qvxA4JUgyQ</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Schröder, Silvio</creator><creator>Reinhardt, B.</creator><creator>Brauner, C.</creator><creator>Gebauer, I.</creator><creator>Buchwald, R.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201705</creationdate><title>Development of a Marslander with crushable shock absorber by virtual and experimental testing</title><author>Schröder, Silvio ; Reinhardt, B. ; Brauner, C. ; Gebauer, I. ; Buchwald, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-a06e9821df5f344613af7a2b2dcfda915cdb9d28e53c75789ebc42012cc5238f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Air bags</topic><topic>Aluminum</topic><topic>Computer simulation</topic><topic>Damping</topic><topic>Energy absorption</topic><topic>Engineering</topic><topic>Experimental data</topic><topic>Focusing</topic><topic>Honeycomb construction</topic><topic>Legs</topic><topic>Manufacturing industry</topic><topic>Mars missions</topic><topic>Mathematical models</topic><topic>Mobility</topic><topic>Moon</topic><topic>Numerical simulations</topic><topic>Planetary probes</topic><topic>Planets</topic><topic>Polyethylenes</topic><topic>Probes</topic><topic>Robustness (mathematics)</topic><topic>Russian Space Program</topic><topic>Shock loads</topic><topic>Soft landing</topic><topic>Space exploration</topic><topic>Touchdown</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schröder, Silvio</creatorcontrib><creatorcontrib>Reinhardt, B.</creatorcontrib><creatorcontrib>Brauner, C.</creatorcontrib><creatorcontrib>Gebauer, I.</creatorcontrib><creatorcontrib>Buchwald, R.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schröder, Silvio</au><au>Reinhardt, B.</au><au>Brauner, C.</au><au>Gebauer, I.</au><au>Buchwald, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Marslander with crushable shock absorber by virtual and experimental testing</atitle><jtitle>Acta astronautica</jtitle><date>2017-05</date><risdate>2017</risdate><volume>134</volume><spage>65</spage><epage>74</epage><pages>65-74</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>Since the beginning of space exploration, probes have been sent to other planets or moons with the associated challenge of landing on these bodies. For a soft landing several damping methods like landing legs or airbags have been used. A new and potentially less complex and lighter way to reduce the shock loads at touchdown is the use of a crushable shield underneath the lander platform. This crushable shield could be made for example out of an energy absorbing materials like an aluminum honeycomb core with a High Performance Polyethylene cover sheet. The design is particularly advantageous since no moving parts nor other mechanisms are required, thus making the shield very robust and fail safe. The only mission that has used this technique is the ESA/Roscosmos-mission “ExoMars” which started in 2016. The development of such a crushable shock absorber implies and requires assessment of materials, manufacturing processes, the setup of a numerical simulation and the experimental validation in a test lab. In an independent research project (Marslander) a representative engineering mockup of the landing platform has been built and tested at the Landing &amp; Mobility Test Facility (LAMA) to support the numerical simulation model with experimental data. This paper is focusing on the hardware tests. Results of the above stated development and testing processes will be presented and discussed.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2017.01.023</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-5765
ispartof Acta astronautica, 2017-05, Vol.134, p.65-74
issn 0094-5765
1879-2030
language eng
recordid cdi_proquest_journals_1916144047
source Elsevier ScienceDirect Journals
subjects Air bags
Aluminum
Computer simulation
Damping
Energy absorption
Engineering
Experimental data
Focusing
Honeycomb construction
Legs
Manufacturing industry
Mars missions
Mathematical models
Mobility
Moon
Numerical simulations
Planetary probes
Planets
Polyethylenes
Probes
Robustness (mathematics)
Russian Space Program
Shock loads
Soft landing
Space exploration
Touchdown
title Development of a Marslander with crushable shock absorber by virtual and experimental testing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A50%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Marslander%20with%20crushable%20shock%20absorber%20by%20virtual%20and%20experimental%20testing&rft.jtitle=Acta%20astronautica&rft.au=Schr%C3%B6der,%20Silvio&rft.date=2017-05&rft.volume=134&rft.spage=65&rft.epage=74&rft.pages=65-74&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2017.01.023&rft_dat=%3Cproquest_cross%3E1916144047%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1916144047&rft_id=info:pmid/&rft_els_id=S0094576516307275&rfr_iscdi=true