Development of a Marslander with crushable shock absorber by virtual and experimental testing
Since the beginning of space exploration, probes have been sent to other planets or moons with the associated challenge of landing on these bodies. For a soft landing several damping methods like landing legs or airbags have been used. A new and potentially less complex and lighter way to reduce the...
Gespeichert in:
Veröffentlicht in: | Acta astronautica 2017-05, Vol.134, p.65-74 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74 |
---|---|
container_issue | |
container_start_page | 65 |
container_title | Acta astronautica |
container_volume | 134 |
creator | Schröder, Silvio Reinhardt, B. Brauner, C. Gebauer, I. Buchwald, R. |
description | Since the beginning of space exploration, probes have been sent to other planets or moons with the associated challenge of landing on these bodies. For a soft landing several damping methods like landing legs or airbags have been used. A new and potentially less complex and lighter way to reduce the shock loads at touchdown is the use of a crushable shield underneath the lander platform. This crushable shield could be made for example out of an energy absorbing materials like an aluminum honeycomb core with a High Performance Polyethylene cover sheet. The design is particularly advantageous since no moving parts nor other mechanisms are required, thus making the shield very robust and fail safe. The only mission that has used this technique is the ESA/Roscosmos-mission “ExoMars” which started in 2016.
The development of such a crushable shock absorber implies and requires assessment of materials, manufacturing processes, the setup of a numerical simulation and the experimental validation in a test lab. In an independent research project (Marslander) a representative engineering mockup of the landing platform has been built and tested at the Landing & Mobility Test Facility (LAMA) to support the numerical simulation model with experimental data.
This paper is focusing on the hardware tests. Results of the above stated development and testing processes will be presented and discussed. |
doi_str_mv | 10.1016/j.actaastro.2017.01.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1916144047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576516307275</els_id><sourcerecordid>1916144047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-a06e9821df5f344613af7a2b2dcfda915cdb9d28e53c75789ebc42012cc5238f3</originalsourceid><addsrcrecordid>eNqFUMlOwzAQtRBIlMI3YIlzgpckjo8Vu1TEBY7IcpwJdQhxsN1C_x5XRVw5jTTzlnkPoXNKckpoddnn2kStQ_QuZ4SKnNCcMH6AZrQWMmOEk0M0I0QWWSmq8hidhNATQgSr5Qy9XsMGBjd9wBix67DGj9qHQY8tePxl4wobvw4r3QyAw8qZd6yb4HyTrs0Wb6yPaz3gBMfwPYG3O520iBCiHd9O0VGnhwBnv3OOXm5vnq_us-XT3cPVYpkZLlnMNKlA1oy2Xdnxoqgo153QrGGt6VotaWnaRrashpIbUYpaQmOKlJUZUzJed3yOLva6k3ef6-Sterf2Y7JUVNKKFgUpREKJPcp4F4KHTk3pYe23ihK161L16q9LtetSEapSl4m52DMhhdhY8CoYC6OB1nowUbXO_qvxA4JUgyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916144047</pqid></control><display><type>article</type><title>Development of a Marslander with crushable shock absorber by virtual and experimental testing</title><source>Elsevier ScienceDirect Journals</source><creator>Schröder, Silvio ; Reinhardt, B. ; Brauner, C. ; Gebauer, I. ; Buchwald, R.</creator><creatorcontrib>Schröder, Silvio ; Reinhardt, B. ; Brauner, C. ; Gebauer, I. ; Buchwald, R.</creatorcontrib><description>Since the beginning of space exploration, probes have been sent to other planets or moons with the associated challenge of landing on these bodies. For a soft landing several damping methods like landing legs or airbags have been used. A new and potentially less complex and lighter way to reduce the shock loads at touchdown is the use of a crushable shield underneath the lander platform. This crushable shield could be made for example out of an energy absorbing materials like an aluminum honeycomb core with a High Performance Polyethylene cover sheet. The design is particularly advantageous since no moving parts nor other mechanisms are required, thus making the shield very robust and fail safe. The only mission that has used this technique is the ESA/Roscosmos-mission “ExoMars” which started in 2016.
The development of such a crushable shock absorber implies and requires assessment of materials, manufacturing processes, the setup of a numerical simulation and the experimental validation in a test lab. In an independent research project (Marslander) a representative engineering mockup of the landing platform has been built and tested at the Landing & Mobility Test Facility (LAMA) to support the numerical simulation model with experimental data.
This paper is focusing on the hardware tests. Results of the above stated development and testing processes will be presented and discussed.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2017.01.023</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Air bags ; Aluminum ; Computer simulation ; Damping ; Energy absorption ; Engineering ; Experimental data ; Focusing ; Honeycomb construction ; Legs ; Manufacturing industry ; Mars missions ; Mathematical models ; Mobility ; Moon ; Numerical simulations ; Planetary probes ; Planets ; Polyethylenes ; Probes ; Robustness (mathematics) ; Russian Space Program ; Shock loads ; Soft landing ; Space exploration ; Touchdown</subject><ispartof>Acta astronautica, 2017-05, Vol.134, p.65-74</ispartof><rights>2017 IAA</rights><rights>Copyright Elsevier BV May 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-a06e9821df5f344613af7a2b2dcfda915cdb9d28e53c75789ebc42012cc5238f3</citedby><cites>FETCH-LOGICAL-c392t-a06e9821df5f344613af7a2b2dcfda915cdb9d28e53c75789ebc42012cc5238f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actaastro.2017.01.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Schröder, Silvio</creatorcontrib><creatorcontrib>Reinhardt, B.</creatorcontrib><creatorcontrib>Brauner, C.</creatorcontrib><creatorcontrib>Gebauer, I.</creatorcontrib><creatorcontrib>Buchwald, R.</creatorcontrib><title>Development of a Marslander with crushable shock absorber by virtual and experimental testing</title><title>Acta astronautica</title><description>Since the beginning of space exploration, probes have been sent to other planets or moons with the associated challenge of landing on these bodies. For a soft landing several damping methods like landing legs or airbags have been used. A new and potentially less complex and lighter way to reduce the shock loads at touchdown is the use of a crushable shield underneath the lander platform. This crushable shield could be made for example out of an energy absorbing materials like an aluminum honeycomb core with a High Performance Polyethylene cover sheet. The design is particularly advantageous since no moving parts nor other mechanisms are required, thus making the shield very robust and fail safe. The only mission that has used this technique is the ESA/Roscosmos-mission “ExoMars” which started in 2016.
The development of such a crushable shock absorber implies and requires assessment of materials, manufacturing processes, the setup of a numerical simulation and the experimental validation in a test lab. In an independent research project (Marslander) a representative engineering mockup of the landing platform has been built and tested at the Landing & Mobility Test Facility (LAMA) to support the numerical simulation model with experimental data.
This paper is focusing on the hardware tests. Results of the above stated development and testing processes will be presented and discussed.</description><subject>Air bags</subject><subject>Aluminum</subject><subject>Computer simulation</subject><subject>Damping</subject><subject>Energy absorption</subject><subject>Engineering</subject><subject>Experimental data</subject><subject>Focusing</subject><subject>Honeycomb construction</subject><subject>Legs</subject><subject>Manufacturing industry</subject><subject>Mars missions</subject><subject>Mathematical models</subject><subject>Mobility</subject><subject>Moon</subject><subject>Numerical simulations</subject><subject>Planetary probes</subject><subject>Planets</subject><subject>Polyethylenes</subject><subject>Probes</subject><subject>Robustness (mathematics)</subject><subject>Russian Space Program</subject><subject>Shock loads</subject><subject>Soft landing</subject><subject>Space exploration</subject><subject>Touchdown</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUMlOwzAQtRBIlMI3YIlzgpckjo8Vu1TEBY7IcpwJdQhxsN1C_x5XRVw5jTTzlnkPoXNKckpoddnn2kStQ_QuZ4SKnNCcMH6AZrQWMmOEk0M0I0QWWSmq8hidhNATQgSr5Qy9XsMGBjd9wBix67DGj9qHQY8tePxl4wobvw4r3QyAw8qZd6yb4HyTrs0Wb6yPaz3gBMfwPYG3O520iBCiHd9O0VGnhwBnv3OOXm5vnq_us-XT3cPVYpkZLlnMNKlA1oy2Xdnxoqgo153QrGGt6VotaWnaRrashpIbUYpaQmOKlJUZUzJed3yOLva6k3ef6-Sterf2Y7JUVNKKFgUpREKJPcp4F4KHTk3pYe23ihK161L16q9LtetSEapSl4m52DMhhdhY8CoYC6OB1nowUbXO_qvxA4JUgyQ</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Schröder, Silvio</creator><creator>Reinhardt, B.</creator><creator>Brauner, C.</creator><creator>Gebauer, I.</creator><creator>Buchwald, R.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201705</creationdate><title>Development of a Marslander with crushable shock absorber by virtual and experimental testing</title><author>Schröder, Silvio ; Reinhardt, B. ; Brauner, C. ; Gebauer, I. ; Buchwald, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-a06e9821df5f344613af7a2b2dcfda915cdb9d28e53c75789ebc42012cc5238f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Air bags</topic><topic>Aluminum</topic><topic>Computer simulation</topic><topic>Damping</topic><topic>Energy absorption</topic><topic>Engineering</topic><topic>Experimental data</topic><topic>Focusing</topic><topic>Honeycomb construction</topic><topic>Legs</topic><topic>Manufacturing industry</topic><topic>Mars missions</topic><topic>Mathematical models</topic><topic>Mobility</topic><topic>Moon</topic><topic>Numerical simulations</topic><topic>Planetary probes</topic><topic>Planets</topic><topic>Polyethylenes</topic><topic>Probes</topic><topic>Robustness (mathematics)</topic><topic>Russian Space Program</topic><topic>Shock loads</topic><topic>Soft landing</topic><topic>Space exploration</topic><topic>Touchdown</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schröder, Silvio</creatorcontrib><creatorcontrib>Reinhardt, B.</creatorcontrib><creatorcontrib>Brauner, C.</creatorcontrib><creatorcontrib>Gebauer, I.</creatorcontrib><creatorcontrib>Buchwald, R.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schröder, Silvio</au><au>Reinhardt, B.</au><au>Brauner, C.</au><au>Gebauer, I.</au><au>Buchwald, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Marslander with crushable shock absorber by virtual and experimental testing</atitle><jtitle>Acta astronautica</jtitle><date>2017-05</date><risdate>2017</risdate><volume>134</volume><spage>65</spage><epage>74</epage><pages>65-74</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>Since the beginning of space exploration, probes have been sent to other planets or moons with the associated challenge of landing on these bodies. For a soft landing several damping methods like landing legs or airbags have been used. A new and potentially less complex and lighter way to reduce the shock loads at touchdown is the use of a crushable shield underneath the lander platform. This crushable shield could be made for example out of an energy absorbing materials like an aluminum honeycomb core with a High Performance Polyethylene cover sheet. The design is particularly advantageous since no moving parts nor other mechanisms are required, thus making the shield very robust and fail safe. The only mission that has used this technique is the ESA/Roscosmos-mission “ExoMars” which started in 2016.
The development of such a crushable shock absorber implies and requires assessment of materials, manufacturing processes, the setup of a numerical simulation and the experimental validation in a test lab. In an independent research project (Marslander) a representative engineering mockup of the landing platform has been built and tested at the Landing & Mobility Test Facility (LAMA) to support the numerical simulation model with experimental data.
This paper is focusing on the hardware tests. Results of the above stated development and testing processes will be presented and discussed.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2017.01.023</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-5765 |
ispartof | Acta astronautica, 2017-05, Vol.134, p.65-74 |
issn | 0094-5765 1879-2030 |
language | eng |
recordid | cdi_proquest_journals_1916144047 |
source | Elsevier ScienceDirect Journals |
subjects | Air bags Aluminum Computer simulation Damping Energy absorption Engineering Experimental data Focusing Honeycomb construction Legs Manufacturing industry Mars missions Mathematical models Mobility Moon Numerical simulations Planetary probes Planets Polyethylenes Probes Robustness (mathematics) Russian Space Program Shock loads Soft landing Space exploration Touchdown |
title | Development of a Marslander with crushable shock absorber by virtual and experimental testing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A50%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Marslander%20with%20crushable%20shock%20absorber%20by%20virtual%20and%20experimental%20testing&rft.jtitle=Acta%20astronautica&rft.au=Schr%C3%B6der,%20Silvio&rft.date=2017-05&rft.volume=134&rft.spage=65&rft.epage=74&rft.pages=65-74&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2017.01.023&rft_dat=%3Cproquest_cross%3E1916144047%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1916144047&rft_id=info:pmid/&rft_els_id=S0094576516307275&rfr_iscdi=true |