Low Temperature Ionic Conductivity of an Acceptor-Doped Perovskite: II. Impedance of Single-Crystal BaTiO3

Low temperature conductivity mechanisms were identified in acceptor‐doped BaTiO3 single crystals equilibrated and quenched from high temperature under different oxygen partial pressures. A range of acceptor ionization states were quenched into samples doped with manganese or iron. Using an appropria...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2016-10, Vol.99 (10), p.3360-3366
Hauptverfasser: Maier, Russell A., Randall, Clive A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3366
container_issue 10
container_start_page 3360
container_title Journal of the American Ceramic Society
container_volume 99
creator Maier, Russell A.
Randall, Clive A.
description Low temperature conductivity mechanisms were identified in acceptor‐doped BaTiO3 single crystals equilibrated and quenched from high temperature under different oxygen partial pressures. A range of acceptor ionization states were quenched into samples doped with manganese or iron. Using an appropriate equivalent circuit to interpret impedance spectroscopy data, room temperature conductivity mechanisms in the single crystal samples were identified, and the permittivity/temperature dependence was also shown to be self‐consistent with the nature of a first‐order ferroelectric phase transition. The primary, low temperature, conduction mechanism in acceptor‐doped BaTiO3 was determined to be dominated by the migration of oxygen vacancies. The activation energy for oxygen vacancy migration was experimentally determined to have a value of nearly 0.7 eV. This activation energy represents an intrinsic value for vacancy hopping and confirms our previous work that revealed minimal interaction between acceptor dopants and oxygen vacancies in BaTiO3 in contrast to the well‐documented evidence of defect association in SrTiO3.
doi_str_mv 10.1111/jace.14347
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1916130385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1916130385</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2917-5e2687b3490dc5ee0097c42b4da6dd2e59b766f45bb9e9e9dced9090e16794d33</originalsourceid><addsrcrecordid>eNp9kMFu2zAMhoWhBZZ2vewJBPTsTLJkyeot89LOadAWaIYdBVliBiWp5clOsrz9lGToceSBJPD_JPEh9JmSMU3xZWUsjClnXH5AI1oUNMsVFRdoRAjJM1nm5CO66vtVGqkq-Qit5mGPF_DWQTTDNgKuQ-strkLrtnbwOz8ccFhi0-KJtdANIWbfQgcOv0AMu37tB7jDdT3GdVrhTGvhKH_17a8NZFU89IPZ4K9m4Z_ZJ3S5NJsebv7Va_Tjfrqovmfz54e6mswzn36VWQG5KGXDuCLOFgCEKGl53nBnhHM5FKqRQix50TQKUjoLThFFgAqpuGPsGt2e93Yx_N5CP-hV2MY2ndQ0waCMsLL4r6oUIpc5FySp6Fm19xs46C76NxMPmhJ9xK2PuPUJt55NqumpS57s7PH9AH_ePSautZBMFvrn04NWc05mr0LqR_YXIfiCdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1866272460</pqid></control><display><type>article</type><title>Low Temperature Ionic Conductivity of an Acceptor-Doped Perovskite: II. Impedance of Single-Crystal BaTiO3</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Maier, Russell A. ; Randall, Clive A.</creator><contributor>Stevenson, J.</contributor><creatorcontrib>Maier, Russell A. ; Randall, Clive A. ; Stevenson, J.</creatorcontrib><description>Low temperature conductivity mechanisms were identified in acceptor‐doped BaTiO3 single crystals equilibrated and quenched from high temperature under different oxygen partial pressures. A range of acceptor ionization states were quenched into samples doped with manganese or iron. Using an appropriate equivalent circuit to interpret impedance spectroscopy data, room temperature conductivity mechanisms in the single crystal samples were identified, and the permittivity/temperature dependence was also shown to be self‐consistent with the nature of a first‐order ferroelectric phase transition. The primary, low temperature, conduction mechanism in acceptor‐doped BaTiO3 was determined to be dominated by the migration of oxygen vacancies. The activation energy for oxygen vacancy migration was experimentally determined to have a value of nearly 0.7 eV. This activation energy represents an intrinsic value for vacancy hopping and confirms our previous work that revealed minimal interaction between acceptor dopants and oxygen vacancies in BaTiO3 in contrast to the well‐documented evidence of defect association in SrTiO3.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.14347</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Columbus: Blackwell Publishing Ltd</publisher><subject>Activation energy ; Balancing ; Barium titanates ; Conductivity ; Crystals ; defects ; Dopants ; electrical conductivity ; Equivalent circuits ; Ferroelectric materials ; ferroelectricity/ferroelectric materials ; Hopping conduction ; Impedance spectroscopy ; Ion currents ; Ionization ; Iron ; Lattice vacancies ; Low temperature ; Manganese ; Migration ; Oxygen ; Permittivity ; Perovskite ; Phase transitions ; Quenching ; Single crystals ; Strontium titanates ; Temperature ; Temperature dependence ; Thermal conductivity ; vacancies</subject><ispartof>Journal of the American Ceramic Society, 2016-10, Vol.99 (10), p.3360-3366</ispartof><rights>2016 The American Ceramic Society</rights><rights>2016 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4024-589X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.14347$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.14347$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><contributor>Stevenson, J.</contributor><creatorcontrib>Maier, Russell A.</creatorcontrib><creatorcontrib>Randall, Clive A.</creatorcontrib><title>Low Temperature Ionic Conductivity of an Acceptor-Doped Perovskite: II. Impedance of Single-Crystal BaTiO3</title><title>Journal of the American Ceramic Society</title><addtitle>J. Am. Ceram. Soc</addtitle><description>Low temperature conductivity mechanisms were identified in acceptor‐doped BaTiO3 single crystals equilibrated and quenched from high temperature under different oxygen partial pressures. A range of acceptor ionization states were quenched into samples doped with manganese or iron. Using an appropriate equivalent circuit to interpret impedance spectroscopy data, room temperature conductivity mechanisms in the single crystal samples were identified, and the permittivity/temperature dependence was also shown to be self‐consistent with the nature of a first‐order ferroelectric phase transition. The primary, low temperature, conduction mechanism in acceptor‐doped BaTiO3 was determined to be dominated by the migration of oxygen vacancies. The activation energy for oxygen vacancy migration was experimentally determined to have a value of nearly 0.7 eV. This activation energy represents an intrinsic value for vacancy hopping and confirms our previous work that revealed minimal interaction between acceptor dopants and oxygen vacancies in BaTiO3 in contrast to the well‐documented evidence of defect association in SrTiO3.</description><subject>Activation energy</subject><subject>Balancing</subject><subject>Barium titanates</subject><subject>Conductivity</subject><subject>Crystals</subject><subject>defects</subject><subject>Dopants</subject><subject>electrical conductivity</subject><subject>Equivalent circuits</subject><subject>Ferroelectric materials</subject><subject>ferroelectricity/ferroelectric materials</subject><subject>Hopping conduction</subject><subject>Impedance spectroscopy</subject><subject>Ion currents</subject><subject>Ionization</subject><subject>Iron</subject><subject>Lattice vacancies</subject><subject>Low temperature</subject><subject>Manganese</subject><subject>Migration</subject><subject>Oxygen</subject><subject>Permittivity</subject><subject>Perovskite</subject><subject>Phase transitions</subject><subject>Quenching</subject><subject>Single crystals</subject><subject>Strontium titanates</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Thermal conductivity</subject><subject>vacancies</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMFu2zAMhoWhBZZ2vewJBPTsTLJkyeot89LOadAWaIYdBVliBiWp5clOsrz9lGToceSBJPD_JPEh9JmSMU3xZWUsjClnXH5AI1oUNMsVFRdoRAjJM1nm5CO66vtVGqkq-Qit5mGPF_DWQTTDNgKuQ-strkLrtnbwOz8ccFhi0-KJtdANIWbfQgcOv0AMu37tB7jDdT3GdVrhTGvhKH_17a8NZFU89IPZ4K9m4Z_ZJ3S5NJsebv7Va_Tjfrqovmfz54e6mswzn36VWQG5KGXDuCLOFgCEKGl53nBnhHM5FKqRQix50TQKUjoLThFFgAqpuGPsGt2e93Yx_N5CP-hV2MY2ndQ0waCMsLL4r6oUIpc5FySp6Fm19xs46C76NxMPmhJ9xK2PuPUJt55NqumpS57s7PH9AH_ePSautZBMFvrn04NWc05mr0LqR_YXIfiCdw</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Maier, Russell A.</creator><creator>Randall, Clive A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4024-589X</orcidid></search><sort><creationdate>201610</creationdate><title>Low Temperature Ionic Conductivity of an Acceptor-Doped Perovskite: II. Impedance of Single-Crystal BaTiO3</title><author>Maier, Russell A. ; Randall, Clive A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2917-5e2687b3490dc5ee0097c42b4da6dd2e59b766f45bb9e9e9dced9090e16794d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Activation energy</topic><topic>Balancing</topic><topic>Barium titanates</topic><topic>Conductivity</topic><topic>Crystals</topic><topic>defects</topic><topic>Dopants</topic><topic>electrical conductivity</topic><topic>Equivalent circuits</topic><topic>Ferroelectric materials</topic><topic>ferroelectricity/ferroelectric materials</topic><topic>Hopping conduction</topic><topic>Impedance spectroscopy</topic><topic>Ion currents</topic><topic>Ionization</topic><topic>Iron</topic><topic>Lattice vacancies</topic><topic>Low temperature</topic><topic>Manganese</topic><topic>Migration</topic><topic>Oxygen</topic><topic>Permittivity</topic><topic>Perovskite</topic><topic>Phase transitions</topic><topic>Quenching</topic><topic>Single crystals</topic><topic>Strontium titanates</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Thermal conductivity</topic><topic>vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maier, Russell A.</creatorcontrib><creatorcontrib>Randall, Clive A.</creatorcontrib><collection>Istex</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maier, Russell A.</au><au>Randall, Clive A.</au><au>Stevenson, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Temperature Ionic Conductivity of an Acceptor-Doped Perovskite: II. Impedance of Single-Crystal BaTiO3</atitle><jtitle>Journal of the American Ceramic Society</jtitle><addtitle>J. Am. Ceram. Soc</addtitle><date>2016-10</date><risdate>2016</risdate><volume>99</volume><issue>10</issue><spage>3360</spage><epage>3366</epage><pages>3360-3366</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>Low temperature conductivity mechanisms were identified in acceptor‐doped BaTiO3 single crystals equilibrated and quenched from high temperature under different oxygen partial pressures. A range of acceptor ionization states were quenched into samples doped with manganese or iron. Using an appropriate equivalent circuit to interpret impedance spectroscopy data, room temperature conductivity mechanisms in the single crystal samples were identified, and the permittivity/temperature dependence was also shown to be self‐consistent with the nature of a first‐order ferroelectric phase transition. The primary, low temperature, conduction mechanism in acceptor‐doped BaTiO3 was determined to be dominated by the migration of oxygen vacancies. The activation energy for oxygen vacancy migration was experimentally determined to have a value of nearly 0.7 eV. This activation energy represents an intrinsic value for vacancy hopping and confirms our previous work that revealed minimal interaction between acceptor dopants and oxygen vacancies in BaTiO3 in contrast to the well‐documented evidence of defect association in SrTiO3.</abstract><cop>Columbus</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/jace.14347</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4024-589X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2016-10, Vol.99 (10), p.3360-3366
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_1916130385
source Wiley Online Library Journals Frontfile Complete
subjects Activation energy
Balancing
Barium titanates
Conductivity
Crystals
defects
Dopants
electrical conductivity
Equivalent circuits
Ferroelectric materials
ferroelectricity/ferroelectric materials
Hopping conduction
Impedance spectroscopy
Ion currents
Ionization
Iron
Lattice vacancies
Low temperature
Manganese
Migration
Oxygen
Permittivity
Perovskite
Phase transitions
Quenching
Single crystals
Strontium titanates
Temperature
Temperature dependence
Thermal conductivity
vacancies
title Low Temperature Ionic Conductivity of an Acceptor-Doped Perovskite: II. Impedance of Single-Crystal BaTiO3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T10%3A35%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Temperature%20Ionic%20Conductivity%20of%20an%20Acceptor-Doped%20Perovskite:%20II.%20Impedance%20of%20Single-Crystal%20BaTiO3&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Maier,%20Russell%20A.&rft.date=2016-10&rft.volume=99&rft.issue=10&rft.spage=3360&rft.epage=3366&rft.pages=3360-3366&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/jace.14347&rft_dat=%3Cproquest_wiley%3E1916130385%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1866272460&rft_id=info:pmid/&rfr_iscdi=true