Low Temperature Ionic Conductivity of an Acceptor-Doped Perovskite: II. Impedance of Single-Crystal BaTiO3
Low temperature conductivity mechanisms were identified in acceptor‐doped BaTiO3 single crystals equilibrated and quenched from high temperature under different oxygen partial pressures. A range of acceptor ionization states were quenched into samples doped with manganese or iron. Using an appropria...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2016-10, Vol.99 (10), p.3360-3366 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3366 |
---|---|
container_issue | 10 |
container_start_page | 3360 |
container_title | Journal of the American Ceramic Society |
container_volume | 99 |
creator | Maier, Russell A. Randall, Clive A. |
description | Low temperature conductivity mechanisms were identified in acceptor‐doped BaTiO3 single crystals equilibrated and quenched from high temperature under different oxygen partial pressures. A range of acceptor ionization states were quenched into samples doped with manganese or iron. Using an appropriate equivalent circuit to interpret impedance spectroscopy data, room temperature conductivity mechanisms in the single crystal samples were identified, and the permittivity/temperature dependence was also shown to be self‐consistent with the nature of a first‐order ferroelectric phase transition. The primary, low temperature, conduction mechanism in acceptor‐doped BaTiO3 was determined to be dominated by the migration of oxygen vacancies. The activation energy for oxygen vacancy migration was experimentally determined to have a value of nearly 0.7 eV. This activation energy represents an intrinsic value for vacancy hopping and confirms our previous work that revealed minimal interaction between acceptor dopants and oxygen vacancies in BaTiO3 in contrast to the well‐documented evidence of defect association in SrTiO3. |
doi_str_mv | 10.1111/jace.14347 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1916130385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1916130385</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2917-5e2687b3490dc5ee0097c42b4da6dd2e59b766f45bb9e9e9dced9090e16794d33</originalsourceid><addsrcrecordid>eNp9kMFu2zAMhoWhBZZ2vewJBPTsTLJkyeot89LOadAWaIYdBVliBiWp5clOsrz9lGToceSBJPD_JPEh9JmSMU3xZWUsjClnXH5AI1oUNMsVFRdoRAjJM1nm5CO66vtVGqkq-Qit5mGPF_DWQTTDNgKuQ-strkLrtnbwOz8ccFhi0-KJtdANIWbfQgcOv0AMu37tB7jDdT3GdVrhTGvhKH_17a8NZFU89IPZ4K9m4Z_ZJ3S5NJsebv7Va_Tjfrqovmfz54e6mswzn36VWQG5KGXDuCLOFgCEKGl53nBnhHM5FKqRQix50TQKUjoLThFFgAqpuGPsGt2e93Yx_N5CP-hV2MY2ndQ0waCMsLL4r6oUIpc5FySp6Fm19xs46C76NxMPmhJ9xK2PuPUJt55NqumpS57s7PH9AH_ePSautZBMFvrn04NWc05mr0LqR_YXIfiCdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1866272460</pqid></control><display><type>article</type><title>Low Temperature Ionic Conductivity of an Acceptor-Doped Perovskite: II. Impedance of Single-Crystal BaTiO3</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Maier, Russell A. ; Randall, Clive A.</creator><contributor>Stevenson, J.</contributor><creatorcontrib>Maier, Russell A. ; Randall, Clive A. ; Stevenson, J.</creatorcontrib><description>Low temperature conductivity mechanisms were identified in acceptor‐doped BaTiO3 single crystals equilibrated and quenched from high temperature under different oxygen partial pressures. A range of acceptor ionization states were quenched into samples doped with manganese or iron. Using an appropriate equivalent circuit to interpret impedance spectroscopy data, room temperature conductivity mechanisms in the single crystal samples were identified, and the permittivity/temperature dependence was also shown to be self‐consistent with the nature of a first‐order ferroelectric phase transition. The primary, low temperature, conduction mechanism in acceptor‐doped BaTiO3 was determined to be dominated by the migration of oxygen vacancies. The activation energy for oxygen vacancy migration was experimentally determined to have a value of nearly 0.7 eV. This activation energy represents an intrinsic value for vacancy hopping and confirms our previous work that revealed minimal interaction between acceptor dopants and oxygen vacancies in BaTiO3 in contrast to the well‐documented evidence of defect association in SrTiO3.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.14347</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Columbus: Blackwell Publishing Ltd</publisher><subject>Activation energy ; Balancing ; Barium titanates ; Conductivity ; Crystals ; defects ; Dopants ; electrical conductivity ; Equivalent circuits ; Ferroelectric materials ; ferroelectricity/ferroelectric materials ; Hopping conduction ; Impedance spectroscopy ; Ion currents ; Ionization ; Iron ; Lattice vacancies ; Low temperature ; Manganese ; Migration ; Oxygen ; Permittivity ; Perovskite ; Phase transitions ; Quenching ; Single crystals ; Strontium titanates ; Temperature ; Temperature dependence ; Thermal conductivity ; vacancies</subject><ispartof>Journal of the American Ceramic Society, 2016-10, Vol.99 (10), p.3360-3366</ispartof><rights>2016 The American Ceramic Society</rights><rights>2016 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4024-589X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.14347$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.14347$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><contributor>Stevenson, J.</contributor><creatorcontrib>Maier, Russell A.</creatorcontrib><creatorcontrib>Randall, Clive A.</creatorcontrib><title>Low Temperature Ionic Conductivity of an Acceptor-Doped Perovskite: II. Impedance of Single-Crystal BaTiO3</title><title>Journal of the American Ceramic Society</title><addtitle>J. Am. Ceram. Soc</addtitle><description>Low temperature conductivity mechanisms were identified in acceptor‐doped BaTiO3 single crystals equilibrated and quenched from high temperature under different oxygen partial pressures. A range of acceptor ionization states were quenched into samples doped with manganese or iron. Using an appropriate equivalent circuit to interpret impedance spectroscopy data, room temperature conductivity mechanisms in the single crystal samples were identified, and the permittivity/temperature dependence was also shown to be self‐consistent with the nature of a first‐order ferroelectric phase transition. The primary, low temperature, conduction mechanism in acceptor‐doped BaTiO3 was determined to be dominated by the migration of oxygen vacancies. The activation energy for oxygen vacancy migration was experimentally determined to have a value of nearly 0.7 eV. This activation energy represents an intrinsic value for vacancy hopping and confirms our previous work that revealed minimal interaction between acceptor dopants and oxygen vacancies in BaTiO3 in contrast to the well‐documented evidence of defect association in SrTiO3.</description><subject>Activation energy</subject><subject>Balancing</subject><subject>Barium titanates</subject><subject>Conductivity</subject><subject>Crystals</subject><subject>defects</subject><subject>Dopants</subject><subject>electrical conductivity</subject><subject>Equivalent circuits</subject><subject>Ferroelectric materials</subject><subject>ferroelectricity/ferroelectric materials</subject><subject>Hopping conduction</subject><subject>Impedance spectroscopy</subject><subject>Ion currents</subject><subject>Ionization</subject><subject>Iron</subject><subject>Lattice vacancies</subject><subject>Low temperature</subject><subject>Manganese</subject><subject>Migration</subject><subject>Oxygen</subject><subject>Permittivity</subject><subject>Perovskite</subject><subject>Phase transitions</subject><subject>Quenching</subject><subject>Single crystals</subject><subject>Strontium titanates</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Thermal conductivity</subject><subject>vacancies</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMFu2zAMhoWhBZZ2vewJBPTsTLJkyeot89LOadAWaIYdBVliBiWp5clOsrz9lGToceSBJPD_JPEh9JmSMU3xZWUsjClnXH5AI1oUNMsVFRdoRAjJM1nm5CO66vtVGqkq-Qit5mGPF_DWQTTDNgKuQ-strkLrtnbwOz8ccFhi0-KJtdANIWbfQgcOv0AMu37tB7jDdT3GdVrhTGvhKH_17a8NZFU89IPZ4K9m4Z_ZJ3S5NJsebv7Va_Tjfrqovmfz54e6mswzn36VWQG5KGXDuCLOFgCEKGl53nBnhHM5FKqRQix50TQKUjoLThFFgAqpuGPsGt2e93Yx_N5CP-hV2MY2ndQ0waCMsLL4r6oUIpc5FySp6Fm19xs46C76NxMPmhJ9xK2PuPUJt55NqumpS57s7PH9AH_ePSautZBMFvrn04NWc05mr0LqR_YXIfiCdw</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Maier, Russell A.</creator><creator>Randall, Clive A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4024-589X</orcidid></search><sort><creationdate>201610</creationdate><title>Low Temperature Ionic Conductivity of an Acceptor-Doped Perovskite: II. Impedance of Single-Crystal BaTiO3</title><author>Maier, Russell A. ; Randall, Clive A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2917-5e2687b3490dc5ee0097c42b4da6dd2e59b766f45bb9e9e9dced9090e16794d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Activation energy</topic><topic>Balancing</topic><topic>Barium titanates</topic><topic>Conductivity</topic><topic>Crystals</topic><topic>defects</topic><topic>Dopants</topic><topic>electrical conductivity</topic><topic>Equivalent circuits</topic><topic>Ferroelectric materials</topic><topic>ferroelectricity/ferroelectric materials</topic><topic>Hopping conduction</topic><topic>Impedance spectroscopy</topic><topic>Ion currents</topic><topic>Ionization</topic><topic>Iron</topic><topic>Lattice vacancies</topic><topic>Low temperature</topic><topic>Manganese</topic><topic>Migration</topic><topic>Oxygen</topic><topic>Permittivity</topic><topic>Perovskite</topic><topic>Phase transitions</topic><topic>Quenching</topic><topic>Single crystals</topic><topic>Strontium titanates</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Thermal conductivity</topic><topic>vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maier, Russell A.</creatorcontrib><creatorcontrib>Randall, Clive A.</creatorcontrib><collection>Istex</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maier, Russell A.</au><au>Randall, Clive A.</au><au>Stevenson, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Temperature Ionic Conductivity of an Acceptor-Doped Perovskite: II. Impedance of Single-Crystal BaTiO3</atitle><jtitle>Journal of the American Ceramic Society</jtitle><addtitle>J. Am. Ceram. Soc</addtitle><date>2016-10</date><risdate>2016</risdate><volume>99</volume><issue>10</issue><spage>3360</spage><epage>3366</epage><pages>3360-3366</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>Low temperature conductivity mechanisms were identified in acceptor‐doped BaTiO3 single crystals equilibrated and quenched from high temperature under different oxygen partial pressures. A range of acceptor ionization states were quenched into samples doped with manganese or iron. Using an appropriate equivalent circuit to interpret impedance spectroscopy data, room temperature conductivity mechanisms in the single crystal samples were identified, and the permittivity/temperature dependence was also shown to be self‐consistent with the nature of a first‐order ferroelectric phase transition. The primary, low temperature, conduction mechanism in acceptor‐doped BaTiO3 was determined to be dominated by the migration of oxygen vacancies. The activation energy for oxygen vacancy migration was experimentally determined to have a value of nearly 0.7 eV. This activation energy represents an intrinsic value for vacancy hopping and confirms our previous work that revealed minimal interaction between acceptor dopants and oxygen vacancies in BaTiO3 in contrast to the well‐documented evidence of defect association in SrTiO3.</abstract><cop>Columbus</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/jace.14347</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4024-589X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2016-10, Vol.99 (10), p.3360-3366 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_1916130385 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Activation energy Balancing Barium titanates Conductivity Crystals defects Dopants electrical conductivity Equivalent circuits Ferroelectric materials ferroelectricity/ferroelectric materials Hopping conduction Impedance spectroscopy Ion currents Ionization Iron Lattice vacancies Low temperature Manganese Migration Oxygen Permittivity Perovskite Phase transitions Quenching Single crystals Strontium titanates Temperature Temperature dependence Thermal conductivity vacancies |
title | Low Temperature Ionic Conductivity of an Acceptor-Doped Perovskite: II. Impedance of Single-Crystal BaTiO3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T10%3A35%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Temperature%20Ionic%20Conductivity%20of%20an%20Acceptor-Doped%20Perovskite:%20II.%20Impedance%20of%20Single-Crystal%20BaTiO3&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Maier,%20Russell%20A.&rft.date=2016-10&rft.volume=99&rft.issue=10&rft.spage=3360&rft.epage=3366&rft.pages=3360-3366&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/jace.14347&rft_dat=%3Cproquest_wiley%3E1916130385%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1866272460&rft_id=info:pmid/&rfr_iscdi=true |