Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations

In this article, we propose the reproducing kernel Hilbert space method to obtain the exact and the numerical solutions of fuzzy Fredholm–Volterra integrodifferential equations. The solution methodology is based on generating the orthogonal basis from the obtained kernel functions in which the const...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2017-07, Vol.28 (7), p.1591-1610
1. Verfasser: Abu Arqub, Omar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1610
container_issue 7
container_start_page 1591
container_title Neural computing & applications
container_volume 28
creator Abu Arqub, Omar
description In this article, we propose the reproducing kernel Hilbert space method to obtain the exact and the numerical solutions of fuzzy Fredholm–Volterra integrodifferential equations. The solution methodology is based on generating the orthogonal basis from the obtained kernel functions in which the constraint initial condition is satisfied, while the orthonormal basis is constructing in order to formulate and utilize the solutions with series form in terms of their r -cut representation form in the Hilbert space W 2 2 Ω ⊕ W 2 2 Ω . Several computational experiments are given to show the good performance and potentiality of the proposed procedure. Finally, the utilized results show that the present method and simulated annealing provide a good scheduling methodology to solve such fuzzy equations.
doi_str_mv 10.1007/s00521-015-2110-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1915912137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1915912137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c2cf6a8895f826439cff61bd9622898340734dd5c9a905c930923cd109c03ae13</originalsourceid><addsrcrecordid>eNp1UL1OwzAQthBIlMIDsFliDtzZSRqPVUUBqRILsFrGsdOUNG7tBLWdeAfekCfBpQwsLHfD93f3EXKJcI0Ao5sAkDFMALOEIUKyOSIDTDlPOGTFMRmASCOap_yUnIWwAIA0L7IBacelWnWqq11LnaXerLwre123FX0zvjUNVU3lfN3Nl9Q6T4Nr3veg7Xe7LZ16U85ds_z6-HxxTWe8V7RuO1NFk9pa403b1aqhZt3_RIRzcmJVE8zF7x6S5-nt0-Q-mT3ePUzGs0RzzLtEM21zVRQiswWLRwttbY6vpcgZK0TBUxjxtCwzLZSAODkIxnWJIDRwZZAPydXBN76z7k3o5ML1vo2REgVmAhnyUWThgaW9C8EbK1e-Xiq_lQhyX6s81CpjrXJfq9xEDTtoQuS2lfF_nP8VfQMzqH4S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1915912137</pqid></control><display><type>article</type><title>Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations</title><source>SpringerLink Journals</source><creator>Abu Arqub, Omar</creator><creatorcontrib>Abu Arqub, Omar</creatorcontrib><description>In this article, we propose the reproducing kernel Hilbert space method to obtain the exact and the numerical solutions of fuzzy Fredholm–Volterra integrodifferential equations. The solution methodology is based on generating the orthogonal basis from the obtained kernel functions in which the constraint initial condition is satisfied, while the orthonormal basis is constructing in order to formulate and utilize the solutions with series form in terms of their r -cut representation form in the Hilbert space W 2 2 Ω ⊕ W 2 2 Ω . Several computational experiments are given to show the good performance and potentiality of the proposed procedure. Finally, the utilized results show that the present method and simulated annealing provide a good scheduling methodology to solve such fuzzy equations.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-015-2110-x</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Adaptation ; Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Computer simulation ; Data Mining and Knowledge Discovery ; Hilbert space ; Image Processing and Computer Vision ; Kernel functions ; Original Article ; Probability and Statistics in Computer Science ; Scheduling ; Simulated annealing ; Volterra integral equations</subject><ispartof>Neural computing &amp; applications, 2017-07, Vol.28 (7), p.1591-1610</ispartof><rights>The Natural Computing Applications Forum 2015</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c2cf6a8895f826439cff61bd9622898340734dd5c9a905c930923cd109c03ae13</citedby><cites>FETCH-LOGICAL-c316t-c2cf6a8895f826439cff61bd9622898340734dd5c9a905c930923cd109c03ae13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-015-2110-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-015-2110-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Abu Arqub, Omar</creatorcontrib><title>Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>In this article, we propose the reproducing kernel Hilbert space method to obtain the exact and the numerical solutions of fuzzy Fredholm–Volterra integrodifferential equations. The solution methodology is based on generating the orthogonal basis from the obtained kernel functions in which the constraint initial condition is satisfied, while the orthonormal basis is constructing in order to formulate and utilize the solutions with series form in terms of their r -cut representation form in the Hilbert space W 2 2 Ω ⊕ W 2 2 Ω . Several computational experiments are given to show the good performance and potentiality of the proposed procedure. Finally, the utilized results show that the present method and simulated annealing provide a good scheduling methodology to solve such fuzzy equations.</description><subject>Adaptation</subject><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Hilbert space</subject><subject>Image Processing and Computer Vision</subject><subject>Kernel functions</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Scheduling</subject><subject>Simulated annealing</subject><subject>Volterra integral equations</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UL1OwzAQthBIlMIDsFliDtzZSRqPVUUBqRILsFrGsdOUNG7tBLWdeAfekCfBpQwsLHfD93f3EXKJcI0Ao5sAkDFMALOEIUKyOSIDTDlPOGTFMRmASCOap_yUnIWwAIA0L7IBacelWnWqq11LnaXerLwre123FX0zvjUNVU3lfN3Nl9Q6T4Nr3veg7Xe7LZ16U85ds_z6-HxxTWe8V7RuO1NFk9pa403b1aqhZt3_RIRzcmJVE8zF7x6S5-nt0-Q-mT3ePUzGs0RzzLtEM21zVRQiswWLRwttbY6vpcgZK0TBUxjxtCwzLZSAODkIxnWJIDRwZZAPydXBN76z7k3o5ML1vo2REgVmAhnyUWThgaW9C8EbK1e-Xiq_lQhyX6s81CpjrXJfq9xEDTtoQuS2lfF_nP8VfQMzqH4S</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Abu Arqub, Omar</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170701</creationdate><title>Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations</title><author>Abu Arqub, Omar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c2cf6a8895f826439cff61bd9622898340734dd5c9a905c930923cd109c03ae13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation</topic><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Hilbert space</topic><topic>Image Processing and Computer Vision</topic><topic>Kernel functions</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Scheduling</topic><topic>Simulated annealing</topic><topic>Volterra integral equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abu Arqub, Omar</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abu Arqub, Omar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>28</volume><issue>7</issue><spage>1591</spage><epage>1610</epage><pages>1591-1610</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>In this article, we propose the reproducing kernel Hilbert space method to obtain the exact and the numerical solutions of fuzzy Fredholm–Volterra integrodifferential equations. The solution methodology is based on generating the orthogonal basis from the obtained kernel functions in which the constraint initial condition is satisfied, while the orthonormal basis is constructing in order to formulate and utilize the solutions with series form in terms of their r -cut representation form in the Hilbert space W 2 2 Ω ⊕ W 2 2 Ω . Several computational experiments are given to show the good performance and potentiality of the proposed procedure. Finally, the utilized results show that the present method and simulated annealing provide a good scheduling methodology to solve such fuzzy equations.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-015-2110-x</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2017-07, Vol.28 (7), p.1591-1610
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_1915912137
source SpringerLink Journals
subjects Adaptation
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computer simulation
Data Mining and Knowledge Discovery
Hilbert space
Image Processing and Computer Vision
Kernel functions
Original Article
Probability and Statistics in Computer Science
Scheduling
Simulated annealing
Volterra integral equations
title Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A09%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptation%20of%20reproducing%20kernel%20algorithm%20for%20solving%20fuzzy%20Fredholm%E2%80%93Volterra%20integrodifferential%20equations&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Abu%20Arqub,%20Omar&rft.date=2017-07-01&rft.volume=28&rft.issue=7&rft.spage=1591&rft.epage=1610&rft.pages=1591-1610&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-015-2110-x&rft_dat=%3Cproquest_cross%3E1915912137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1915912137&rft_id=info:pmid/&rfr_iscdi=true