Realistic theory of electronic correlations in nanoscopic systems

Nanostructures with open shell transition metal or molecular constituents host often strong electronic correlations and are highly sensitive to atomistic material details. This tutorial review discusses method developments and applications of theoretical approaches for the realistic description of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. ST, Special topics Special topics, 2017-07, Vol.226 (11), p.2615-2640
Hauptverfasser: Schüler, Malte, Barthel, Stefan, Wehling, Tim, Karolak, Michael, Valli, Angelo, Sangiovanni, Giorgio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2640
container_issue 11
container_start_page 2615
container_title The European physical journal. ST, Special topics
container_volume 226
creator Schüler, Malte
Barthel, Stefan
Wehling, Tim
Karolak, Michael
Valli, Angelo
Sangiovanni, Giorgio
description Nanostructures with open shell transition metal or molecular constituents host often strong electronic correlations and are highly sensitive to atomistic material details. This tutorial review discusses method developments and applications of theoretical approaches for the realistic description of the electronic and magnetic properties of nanostructures with correlated electrons. First, the implementation of a flexible interface between density functional theory and a variant of dynamical mean field theory (DMFT) highly suitable for the simulation of complex correlated structures is explained and illustrated. On the DMFT side, this interface is largely based on recent developments of quantum Monte Carlo and exact diagonalization techniques allowing for efficient descriptions of general four fermion Coulomb interactions, reduced symmetries and spin-orbit coupling, which are explained here. With the examples of the Cr (001) surfaces, magnetic adatoms, and molecular systems it is shown how the interplay of Hubbard U and Hund’s J determines charge and spin fluctuations and how these interactions drive different sorts of correlation effects in nanosystems. Non-local interactions and correlations present a particular challenge for the theory of low dimensional systems. We present our method developments addressing these two challenges, i.e., advancements of the dynamical vertex approximation and a combination of the constrained random phase approximation with continuum medium theories. We demonstrate how non-local interaction and correlation phenomena are controlled not only by dimensionality but also by coupling to the environment which is typically important for determining the physics of nanosystems.
doi_str_mv 10.1140/epjst/e2017-70049-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1915911912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1915911912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-634f0b16f8ef492b256e8bfe6f4da78aa840dce5522bcff9ce4a16ed07b234a03</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKu_wMuC57X53N0cS_ELCoLoOWTTiW7ZbtZMeth_b2wVPHmZGWbe9x14CLlm9JYxSRcwbjEtgFNWlzWlUpfihMyYVqysJGWnv7NQ6pxcIG4pVRXXYkaWL2D7DlPnivQBIU5F8AX04FIMQ166ECP0NnVhwKIbisEOAV0Y8wknTLDDS3LmbY9w9dPn5O3-7nX1WK6fH55Wy3XpBOcp_5aetqzyDXipectVBU3rofJyY-vG2kbSjQOlOG-d99qBtKyCDa1bLqSlYk5ujrljDJ97wGS2YR-H_NIwzZRmufKsEkeViwExgjdj7HY2ToZR883KHFiZAytzYGVEdsmjC7N6eIf4J_sf2xft83D2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1915911912</pqid></control><display><type>article</type><title>Realistic theory of electronic correlations in nanoscopic systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Schüler, Malte ; Barthel, Stefan ; Wehling, Tim ; Karolak, Michael ; Valli, Angelo ; Sangiovanni, Giorgio</creator><creatorcontrib>Schüler, Malte ; Barthel, Stefan ; Wehling, Tim ; Karolak, Michael ; Valli, Angelo ; Sangiovanni, Giorgio</creatorcontrib><description>Nanostructures with open shell transition metal or molecular constituents host often strong electronic correlations and are highly sensitive to atomistic material details. This tutorial review discusses method developments and applications of theoretical approaches for the realistic description of the electronic and magnetic properties of nanostructures with correlated electrons. First, the implementation of a flexible interface between density functional theory and a variant of dynamical mean field theory (DMFT) highly suitable for the simulation of complex correlated structures is explained and illustrated. On the DMFT side, this interface is largely based on recent developments of quantum Monte Carlo and exact diagonalization techniques allowing for efficient descriptions of general four fermion Coulomb interactions, reduced symmetries and spin-orbit coupling, which are explained here. With the examples of the Cr (001) surfaces, magnetic adatoms, and molecular systems it is shown how the interplay of Hubbard U and Hund’s J determines charge and spin fluctuations and how these interactions drive different sorts of correlation effects in nanosystems. Non-local interactions and correlations present a particular challenge for the theory of low dimensional systems. We present our method developments addressing these two challenges, i.e., advancements of the dynamical vertex approximation and a combination of the constrained random phase approximation with continuum medium theories. We demonstrate how non-local interaction and correlation phenomena are controlled not only by dimensionality but also by coupling to the environment which is typically important for determining the physics of nanosystems.</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjst/e2017-70049-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adatoms ; Approximation ; Atomic ; Classical and Continuum Physics ; Computer simulation ; Condensed Matter Physics ; Correlation ; Coulomb friction ; Coupling (molecular) ; Density functional theory ; Dynamical Mean-Field Approach with Predictive Power for Strongly Correlated Materials ; Dynamical systems ; Electron spin ; Magnetic properties ; Materials Science ; Mathematical analysis ; Mean field theory ; Measurement Science and Instrumentation ; Molecular ; Monte Carlo simulation ; Nanostructure ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Review ; Spin-orbit interactions ; Theory</subject><ispartof>The European physical journal. ST, Special topics, 2017-07, Vol.226 (11), p.2615-2640</ispartof><rights>The Author(s) 2017. Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-634f0b16f8ef492b256e8bfe6f4da78aa840dce5522bcff9ce4a16ed07b234a03</citedby><cites>FETCH-LOGICAL-c322t-634f0b16f8ef492b256e8bfe6f4da78aa840dce5522bcff9ce4a16ed07b234a03</cites><orcidid>0000-0003-2218-2901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjst/e2017-70049-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjst/e2017-70049-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Schüler, Malte</creatorcontrib><creatorcontrib>Barthel, Stefan</creatorcontrib><creatorcontrib>Wehling, Tim</creatorcontrib><creatorcontrib>Karolak, Michael</creatorcontrib><creatorcontrib>Valli, Angelo</creatorcontrib><creatorcontrib>Sangiovanni, Giorgio</creatorcontrib><title>Realistic theory of electronic correlations in nanoscopic systems</title><title>The European physical journal. ST, Special topics</title><addtitle>Eur. Phys. J. Spec. Top</addtitle><description>Nanostructures with open shell transition metal or molecular constituents host often strong electronic correlations and are highly sensitive to atomistic material details. This tutorial review discusses method developments and applications of theoretical approaches for the realistic description of the electronic and magnetic properties of nanostructures with correlated electrons. First, the implementation of a flexible interface between density functional theory and a variant of dynamical mean field theory (DMFT) highly suitable for the simulation of complex correlated structures is explained and illustrated. On the DMFT side, this interface is largely based on recent developments of quantum Monte Carlo and exact diagonalization techniques allowing for efficient descriptions of general four fermion Coulomb interactions, reduced symmetries and spin-orbit coupling, which are explained here. With the examples of the Cr (001) surfaces, magnetic adatoms, and molecular systems it is shown how the interplay of Hubbard U and Hund’s J determines charge and spin fluctuations and how these interactions drive different sorts of correlation effects in nanosystems. Non-local interactions and correlations present a particular challenge for the theory of low dimensional systems. We present our method developments addressing these two challenges, i.e., advancements of the dynamical vertex approximation and a combination of the constrained random phase approximation with continuum medium theories. We demonstrate how non-local interaction and correlation phenomena are controlled not only by dimensionality but also by coupling to the environment which is typically important for determining the physics of nanosystems.</description><subject>Adatoms</subject><subject>Approximation</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Computer simulation</subject><subject>Condensed Matter Physics</subject><subject>Correlation</subject><subject>Coulomb friction</subject><subject>Coupling (molecular)</subject><subject>Density functional theory</subject><subject>Dynamical Mean-Field Approach with Predictive Power for Strongly Correlated Materials</subject><subject>Dynamical systems</subject><subject>Electron spin</subject><subject>Magnetic properties</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mean field theory</subject><subject>Measurement Science and Instrumentation</subject><subject>Molecular</subject><subject>Monte Carlo simulation</subject><subject>Nanostructure</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Review</subject><subject>Spin-orbit interactions</subject><subject>Theory</subject><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMoWKu_wMuC57X53N0cS_ELCoLoOWTTiW7ZbtZMeth_b2wVPHmZGWbe9x14CLlm9JYxSRcwbjEtgFNWlzWlUpfihMyYVqysJGWnv7NQ6pxcIG4pVRXXYkaWL2D7DlPnivQBIU5F8AX04FIMQ166ECP0NnVhwKIbisEOAV0Y8wknTLDDS3LmbY9w9dPn5O3-7nX1WK6fH55Wy3XpBOcp_5aetqzyDXipectVBU3rofJyY-vG2kbSjQOlOG-d99qBtKyCDa1bLqSlYk5ujrljDJ97wGS2YR-H_NIwzZRmufKsEkeViwExgjdj7HY2ToZR883KHFiZAytzYGVEdsmjC7N6eIf4J_sf2xft83D2</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Schüler, Malte</creator><creator>Barthel, Stefan</creator><creator>Wehling, Tim</creator><creator>Karolak, Michael</creator><creator>Valli, Angelo</creator><creator>Sangiovanni, Giorgio</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2218-2901</orcidid></search><sort><creationdate>20170701</creationdate><title>Realistic theory of electronic correlations in nanoscopic systems</title><author>Schüler, Malte ; Barthel, Stefan ; Wehling, Tim ; Karolak, Michael ; Valli, Angelo ; Sangiovanni, Giorgio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-634f0b16f8ef492b256e8bfe6f4da78aa840dce5522bcff9ce4a16ed07b234a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adatoms</topic><topic>Approximation</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Computer simulation</topic><topic>Condensed Matter Physics</topic><topic>Correlation</topic><topic>Coulomb friction</topic><topic>Coupling (molecular)</topic><topic>Density functional theory</topic><topic>Dynamical Mean-Field Approach with Predictive Power for Strongly Correlated Materials</topic><topic>Dynamical systems</topic><topic>Electron spin</topic><topic>Magnetic properties</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mean field theory</topic><topic>Measurement Science and Instrumentation</topic><topic>Molecular</topic><topic>Monte Carlo simulation</topic><topic>Nanostructure</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Review</topic><topic>Spin-orbit interactions</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schüler, Malte</creatorcontrib><creatorcontrib>Barthel, Stefan</creatorcontrib><creatorcontrib>Wehling, Tim</creatorcontrib><creatorcontrib>Karolak, Michael</creatorcontrib><creatorcontrib>Valli, Angelo</creatorcontrib><creatorcontrib>Sangiovanni, Giorgio</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schüler, Malte</au><au>Barthel, Stefan</au><au>Wehling, Tim</au><au>Karolak, Michael</au><au>Valli, Angelo</au><au>Sangiovanni, Giorgio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realistic theory of electronic correlations in nanoscopic systems</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><stitle>Eur. Phys. J. Spec. Top</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>226</volume><issue>11</issue><spage>2615</spage><epage>2640</epage><pages>2615-2640</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>Nanostructures with open shell transition metal or molecular constituents host often strong electronic correlations and are highly sensitive to atomistic material details. This tutorial review discusses method developments and applications of theoretical approaches for the realistic description of the electronic and magnetic properties of nanostructures with correlated electrons. First, the implementation of a flexible interface between density functional theory and a variant of dynamical mean field theory (DMFT) highly suitable for the simulation of complex correlated structures is explained and illustrated. On the DMFT side, this interface is largely based on recent developments of quantum Monte Carlo and exact diagonalization techniques allowing for efficient descriptions of general four fermion Coulomb interactions, reduced symmetries and spin-orbit coupling, which are explained here. With the examples of the Cr (001) surfaces, magnetic adatoms, and molecular systems it is shown how the interplay of Hubbard U and Hund’s J determines charge and spin fluctuations and how these interactions drive different sorts of correlation effects in nanosystems. Non-local interactions and correlations present a particular challenge for the theory of low dimensional systems. We present our method developments addressing these two challenges, i.e., advancements of the dynamical vertex approximation and a combination of the constrained random phase approximation with continuum medium theories. We demonstrate how non-local interaction and correlation phenomena are controlled not only by dimensionality but also by coupling to the environment which is typically important for determining the physics of nanosystems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjst/e2017-70049-3</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-2218-2901</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1951-6355
ispartof The European physical journal. ST, Special topics, 2017-07, Vol.226 (11), p.2615-2640
issn 1951-6355
1951-6401
language eng
recordid cdi_proquest_journals_1915911912
source SpringerLink Journals - AutoHoldings
subjects Adatoms
Approximation
Atomic
Classical and Continuum Physics
Computer simulation
Condensed Matter Physics
Correlation
Coulomb friction
Coupling (molecular)
Density functional theory
Dynamical Mean-Field Approach with Predictive Power for Strongly Correlated Materials
Dynamical systems
Electron spin
Magnetic properties
Materials Science
Mathematical analysis
Mean field theory
Measurement Science and Instrumentation
Molecular
Monte Carlo simulation
Nanostructure
Optical and Plasma Physics
Physics
Physics and Astronomy
Review
Spin-orbit interactions
Theory
title Realistic theory of electronic correlations in nanoscopic systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A20%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realistic%20theory%20of%20electronic%20correlations%20in%20nanoscopic%20systems&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Sch%C3%BCler,%20Malte&rft.date=2017-07-01&rft.volume=226&rft.issue=11&rft.spage=2615&rft.epage=2640&rft.pages=2615-2640&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjst/e2017-70049-3&rft_dat=%3Cproquest_cross%3E1915911912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1915911912&rft_id=info:pmid/&rfr_iscdi=true