Error Bounds for the Large-Argument Asymptotic Expansions of the Hankel and Bessel Functions

In this paper, we reconsider the large-argument asymptotic expansions of the Hankel, Bessel and modified Bessel functions and their derivatives. New integral representations for the remainder terms of these asymptotic expansions are found and used to obtain sharp and realistic error bounds. We also...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta applicandae mathematicae 2017-08, Vol.150 (1), p.141-177
1. Verfasser: Nemes, Gergő
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 177
container_issue 1
container_start_page 141
container_title Acta applicandae mathematicae
container_volume 150
creator Nemes, Gergő
description In this paper, we reconsider the large-argument asymptotic expansions of the Hankel, Bessel and modified Bessel functions and their derivatives. New integral representations for the remainder terms of these asymptotic expansions are found and used to obtain sharp and realistic error bounds. We also give re-expansions for these remainder terms and provide their error estimates. A detailed discussion on the sharpness of our error bounds and their relation to other results in the literature is given. The techniques used in this paper should also generalize to asymptotic expansions which arise from an application of the method of steepest descents.
doi_str_mv 10.1007/s10440-017-0099-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1915752207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1915752207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c0d002de5eef3b42abfdfe2974622a6cd6f7527f7a3ab365599b6bb1fed20aae3</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EEqXwAWyWmA3PTmLjsa1aQKrEAhuS5STPpaW1i51I9O9xCQML07vDufdJh5BrDrccQN0lDmUJDLhiAFozOCEjXinBNBTylIyAS8XugetzcpHSBgAKLeWIvM1jDJFOQ-_bRF2O3TvSpY0rZJO46nfoOzpJh92-C926ofOvvfVpHXyiwf2wj9Z_4JZa39IpppTjovdNd0QuyZmz24RXv3dMXhfzl9kjWz4_PM0mS9YUXHasgRZAtFghuqIuha1d61BoVUohrGxa6VQllFO2sHUhq0rrWtY1d9gKsBaLMbkZdvcxfPaYOrMJffT5peE6W6iEAJUpPlBNDClFdGYf1zsbD4aDOUo0g0STJZqjRAO5I4ZOyqxfYfyz_G_pG3y-dW0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1915752207</pqid></control><display><type>article</type><title>Error Bounds for the Large-Argument Asymptotic Expansions of the Hankel and Bessel Functions</title><source>SpringerLink Journals</source><creator>Nemes, Gergő</creator><creatorcontrib>Nemes, Gergő</creatorcontrib><description>In this paper, we reconsider the large-argument asymptotic expansions of the Hankel, Bessel and modified Bessel functions and their derivatives. New integral representations for the remainder terms of these asymptotic expansions are found and used to obtain sharp and realistic error bounds. We also give re-expansions for these remainder terms and provide their error estimates. A detailed discussion on the sharpness of our error bounds and their relation to other results in the literature is given. The techniques used in this paper should also generalize to asymptotic expansions which arise from an application of the method of steepest descents.</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-017-0099-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Asymptotic methods ; Asymptotic properties ; Asymptotic series ; Bessel functions ; Calculus of Variations and Optimal Control; Optimization ; Computational Mathematics and Numerical Analysis ; Derivatives ; Errors ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Probability Theory and Stochastic Processes ; Representations ; Sharpness</subject><ispartof>Acta applicandae mathematicae, 2017-08, Vol.150 (1), p.141-177</ispartof><rights>Springer Science+Business Media Dordrecht 2017</rights><rights>Acta Applicandae Mathematicae is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c0d002de5eef3b42abfdfe2974622a6cd6f7527f7a3ab365599b6bb1fed20aae3</citedby><cites>FETCH-LOGICAL-c316t-c0d002de5eef3b42abfdfe2974622a6cd6f7527f7a3ab365599b6bb1fed20aae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10440-017-0099-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10440-017-0099-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Nemes, Gergő</creatorcontrib><title>Error Bounds for the Large-Argument Asymptotic Expansions of the Hankel and Bessel Functions</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><description>In this paper, we reconsider the large-argument asymptotic expansions of the Hankel, Bessel and modified Bessel functions and their derivatives. New integral representations for the remainder terms of these asymptotic expansions are found and used to obtain sharp and realistic error bounds. We also give re-expansions for these remainder terms and provide their error estimates. A detailed discussion on the sharpness of our error bounds and their relation to other results in the literature is given. The techniques used in this paper should also generalize to asymptotic expansions which arise from an application of the method of steepest descents.</description><subject>Applications of Mathematics</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Asymptotic series</subject><subject>Bessel functions</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Derivatives</subject><subject>Errors</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Representations</subject><subject>Sharpness</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kLFOwzAURS0EEqXwAWyWmA3PTmLjsa1aQKrEAhuS5STPpaW1i51I9O9xCQML07vDufdJh5BrDrccQN0lDmUJDLhiAFozOCEjXinBNBTylIyAS8XugetzcpHSBgAKLeWIvM1jDJFOQ-_bRF2O3TvSpY0rZJO46nfoOzpJh92-C926ofOvvfVpHXyiwf2wj9Z_4JZa39IpppTjovdNd0QuyZmz24RXv3dMXhfzl9kjWz4_PM0mS9YUXHasgRZAtFghuqIuha1d61BoVUohrGxa6VQllFO2sHUhq0rrWtY1d9gKsBaLMbkZdvcxfPaYOrMJffT5peE6W6iEAJUpPlBNDClFdGYf1zsbD4aDOUo0g0STJZqjRAO5I4ZOyqxfYfyz_G_pG3y-dW0</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Nemes, Gergő</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20170801</creationdate><title>Error Bounds for the Large-Argument Asymptotic Expansions of the Hankel and Bessel Functions</title><author>Nemes, Gergő</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c0d002de5eef3b42abfdfe2974622a6cd6f7527f7a3ab365599b6bb1fed20aae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applications of Mathematics</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Asymptotic series</topic><topic>Bessel functions</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Derivatives</topic><topic>Errors</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Representations</topic><topic>Sharpness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nemes, Gergő</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nemes, Gergő</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error Bounds for the Large-Argument Asymptotic Expansions of the Hankel and Bessel Functions</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>150</volume><issue>1</issue><spage>141</spage><epage>177</epage><pages>141-177</pages><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>In this paper, we reconsider the large-argument asymptotic expansions of the Hankel, Bessel and modified Bessel functions and their derivatives. New integral representations for the remainder terms of these asymptotic expansions are found and used to obtain sharp and realistic error bounds. We also give re-expansions for these remainder terms and provide their error estimates. A detailed discussion on the sharpness of our error bounds and their relation to other results in the literature is given. The techniques used in this paper should also generalize to asymptotic expansions which arise from an application of the method of steepest descents.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10440-017-0099-0</doi><tpages>37</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-8019
ispartof Acta applicandae mathematicae, 2017-08, Vol.150 (1), p.141-177
issn 0167-8019
1572-9036
language eng
recordid cdi_proquest_journals_1915752207
source SpringerLink Journals
subjects Applications of Mathematics
Asymptotic methods
Asymptotic properties
Asymptotic series
Bessel functions
Calculus of Variations and Optimal Control
Optimization
Computational Mathematics and Numerical Analysis
Derivatives
Errors
Mathematics
Mathematics and Statistics
Partial Differential Equations
Probability Theory and Stochastic Processes
Representations
Sharpness
title Error Bounds for the Large-Argument Asymptotic Expansions of the Hankel and Bessel Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20Bounds%20for%20the%20Large-Argument%20Asymptotic%20Expansions%20of%20the%20Hankel%20and%20Bessel%20Functions&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Nemes,%20Gerg%C5%91&rft.date=2017-08-01&rft.volume=150&rft.issue=1&rft.spage=141&rft.epage=177&rft.pages=141-177&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-017-0099-0&rft_dat=%3Cproquest_cross%3E1915752207%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1915752207&rft_id=info:pmid/&rfr_iscdi=true