Comparison of Accuracy Measures for RS Image Classification using SVM and ANN Classifiers
The accurate land use land cover (LULC) classifications from satellite imagery are prominent for land use planning, climatic change detection and eco-environment monitoring. This paper investigates the accuracy and reliability of Support Vector Machine (SVM) classifier for classifying multi-spectral...
Gespeichert in:
Veröffentlicht in: | International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2017-06, Vol.7 (3), p.1180 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 1180 |
container_title | International journal of electrical and computer engineering (Malacca, Malacca) |
container_volume | 7 |
creator | Prasad, S.V.S. Savithri, T. Satya V. Murali Krishna, Iyyanki |
description | The accurate land use land cover (LULC) classifications from satellite imagery are prominent for land use planning, climatic change detection and eco-environment monitoring. This paper investigates the accuracy and reliability of Support Vector Machine (SVM) classifier for classifying multi-spectral image of Hyderabad and its surroundings area and also compare its performance with Artificial Neural Network (ANN) classifier. In this paper, a hybrid technique which we refer to as Fuzzy Incorporated Hierarchical clustering has been proposed for clustering the multispectral satellite images into LULC sectors. The experimental results show that overall accuracies of LULC classification of the Hyderabad and its surroundings area are approximately 93.159% for SVM and 89.925% for ANN. The corresponding kappa coefficient values are 0.893 and 0.843. The classified results show that the SVM yields a very promising performance than the ANN in LULC classification of high resolution Landsat-8 satellite images. |
doi_str_mv | 10.11591/ijece.v7i3.pp1180-1187 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1915018606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1915018606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-eabce20db0df483aea230c981201f29ec5c4f28456233359e2f70761af9ff3a3</originalsourceid><addsrcrecordid>eNpNkE1rAjEQhkNpoWL9DQ30vHaSuLvJUZZ-CGqhSqGnMMZEIrrZJm7Bf99VS-kcZt7DMzPwEHLPYMhYrtij31pjh9-lF8OmYUxC1rXyivQ4SJnJEuT1v3xLBiltoStZFFzlPfJZhX2D0adQ0-Do2Jg2ojnSmcXURpuoC5G-L-hkjxtLqx2m5J03ePDdQpt8vaGLjxnFek3H8_kfYGO6IzcOd8kOfmefLJ-fltVrNn17mVTjaWY4wCGzuDKWw3oFazeSAi1yAUZJxoE5rqzJzchxOcoLLoTIleWuhLJg6JRzAkWfPFzONjF8tTYd9Da0se4-aqZYDkwWUHRUeaFMDClF63QT_R7jUTPQZ5P6bFKfTOqLSX0yKX4AUShpMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1915018606</pqid></control><display><type>article</type><title>Comparison of Accuracy Measures for RS Image Classification using SVM and ANN Classifiers</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Prasad, S.V.S. ; Savithri, T. Satya ; V. Murali Krishna, Iyyanki</creator><creatorcontrib>Prasad, S.V.S. ; Savithri, T. Satya ; V. Murali Krishna, Iyyanki</creatorcontrib><description>The accurate land use land cover (LULC) classifications from satellite imagery are prominent for land use planning, climatic change detection and eco-environment monitoring. This paper investigates the accuracy and reliability of Support Vector Machine (SVM) classifier for classifying multi-spectral image of Hyderabad and its surroundings area and also compare its performance with Artificial Neural Network (ANN) classifier. In this paper, a hybrid technique which we refer to as Fuzzy Incorporated Hierarchical clustering has been proposed for clustering the multispectral satellite images into LULC sectors. The experimental results show that overall accuracies of LULC classification of the Hyderabad and its surroundings area are approximately 93.159% for SVM and 89.925% for ANN. The corresponding kappa coefficient values are 0.893 and 0.843. The classified results show that the SVM yields a very promising performance than the ANN in LULC classification of high resolution Landsat-8 satellite images.</description><identifier>ISSN: 2088-8708</identifier><identifier>EISSN: 2088-8708</identifier><identifier>DOI: 10.11591/ijece.v7i3.pp1180-1187</identifier><language>eng</language><publisher>Yogyakarta: IAES Institute of Advanced Engineering and Science</publisher><subject>Artificial neural networks ; Change detection ; Classification ; Classifiers ; Climate change ; Clustering ; Environmental monitoring ; High resolution ; Image classification ; Image detection ; Image resolution ; Land cover ; Land use management ; Landsat satellites ; Learning theory ; Neural networks ; Reliability ; Satellite imagery ; Support vector machines</subject><ispartof>International journal of electrical and computer engineering (Malacca, Malacca), 2017-06, Vol.7 (3), p.1180</ispartof><rights>Copyright IAES Institute of Advanced Engineering and Science Jun 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c200t-eabce20db0df483aea230c981201f29ec5c4f28456233359e2f70761af9ff3a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Prasad, S.V.S.</creatorcontrib><creatorcontrib>Savithri, T. Satya</creatorcontrib><creatorcontrib>V. Murali Krishna, Iyyanki</creatorcontrib><title>Comparison of Accuracy Measures for RS Image Classification using SVM and ANN Classifiers</title><title>International journal of electrical and computer engineering (Malacca, Malacca)</title><description>The accurate land use land cover (LULC) classifications from satellite imagery are prominent for land use planning, climatic change detection and eco-environment monitoring. This paper investigates the accuracy and reliability of Support Vector Machine (SVM) classifier for classifying multi-spectral image of Hyderabad and its surroundings area and also compare its performance with Artificial Neural Network (ANN) classifier. In this paper, a hybrid technique which we refer to as Fuzzy Incorporated Hierarchical clustering has been proposed for clustering the multispectral satellite images into LULC sectors. The experimental results show that overall accuracies of LULC classification of the Hyderabad and its surroundings area are approximately 93.159% for SVM and 89.925% for ANN. The corresponding kappa coefficient values are 0.893 and 0.843. The classified results show that the SVM yields a very promising performance than the ANN in LULC classification of high resolution Landsat-8 satellite images.</description><subject>Artificial neural networks</subject><subject>Change detection</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Climate change</subject><subject>Clustering</subject><subject>Environmental monitoring</subject><subject>High resolution</subject><subject>Image classification</subject><subject>Image detection</subject><subject>Image resolution</subject><subject>Land cover</subject><subject>Land use management</subject><subject>Landsat satellites</subject><subject>Learning theory</subject><subject>Neural networks</subject><subject>Reliability</subject><subject>Satellite imagery</subject><subject>Support vector machines</subject><issn>2088-8708</issn><issn>2088-8708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkE1rAjEQhkNpoWL9DQ30vHaSuLvJUZZ-CGqhSqGnMMZEIrrZJm7Bf99VS-kcZt7DMzPwEHLPYMhYrtij31pjh9-lF8OmYUxC1rXyivQ4SJnJEuT1v3xLBiltoStZFFzlPfJZhX2D0adQ0-Do2Jg2ojnSmcXURpuoC5G-L-hkjxtLqx2m5J03ePDdQpt8vaGLjxnFek3H8_kfYGO6IzcOd8kOfmefLJ-fltVrNn17mVTjaWY4wCGzuDKWw3oFazeSAi1yAUZJxoE5rqzJzchxOcoLLoTIleWuhLJg6JRzAkWfPFzONjF8tTYd9Da0se4-aqZYDkwWUHRUeaFMDClF63QT_R7jUTPQZ5P6bFKfTOqLSX0yKX4AUShpMA</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Prasad, S.V.S.</creator><creator>Savithri, T. Satya</creator><creator>V. Murali Krishna, Iyyanki</creator><general>IAES Institute of Advanced Engineering and Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170601</creationdate><title>Comparison of Accuracy Measures for RS Image Classification using SVM and ANN Classifiers</title><author>Prasad, S.V.S. ; Savithri, T. Satya ; V. Murali Krishna, Iyyanki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-eabce20db0df483aea230c981201f29ec5c4f28456233359e2f70761af9ff3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial neural networks</topic><topic>Change detection</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Climate change</topic><topic>Clustering</topic><topic>Environmental monitoring</topic><topic>High resolution</topic><topic>Image classification</topic><topic>Image detection</topic><topic>Image resolution</topic><topic>Land cover</topic><topic>Land use management</topic><topic>Landsat satellites</topic><topic>Learning theory</topic><topic>Neural networks</topic><topic>Reliability</topic><topic>Satellite imagery</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Prasad, S.V.S.</creatorcontrib><creatorcontrib>Savithri, T. Satya</creatorcontrib><creatorcontrib>V. Murali Krishna, Iyyanki</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East & South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of electrical and computer engineering (Malacca, Malacca)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasad, S.V.S.</au><au>Savithri, T. Satya</au><au>V. Murali Krishna, Iyyanki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Accuracy Measures for RS Image Classification using SVM and ANN Classifiers</atitle><jtitle>International journal of electrical and computer engineering (Malacca, Malacca)</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>7</volume><issue>3</issue><spage>1180</spage><pages>1180-</pages><issn>2088-8708</issn><eissn>2088-8708</eissn><abstract>The accurate land use land cover (LULC) classifications from satellite imagery are prominent for land use planning, climatic change detection and eco-environment monitoring. This paper investigates the accuracy and reliability of Support Vector Machine (SVM) classifier for classifying multi-spectral image of Hyderabad and its surroundings area and also compare its performance with Artificial Neural Network (ANN) classifier. In this paper, a hybrid technique which we refer to as Fuzzy Incorporated Hierarchical clustering has been proposed for clustering the multispectral satellite images into LULC sectors. The experimental results show that overall accuracies of LULC classification of the Hyderabad and its surroundings area are approximately 93.159% for SVM and 89.925% for ANN. The corresponding kappa coefficient values are 0.893 and 0.843. The classified results show that the SVM yields a very promising performance than the ANN in LULC classification of high resolution Landsat-8 satellite images.</abstract><cop>Yogyakarta</cop><pub>IAES Institute of Advanced Engineering and Science</pub><doi>10.11591/ijece.v7i3.pp1180-1187</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2088-8708 |
ispartof | International journal of electrical and computer engineering (Malacca, Malacca), 2017-06, Vol.7 (3), p.1180 |
issn | 2088-8708 2088-8708 |
language | eng |
recordid | cdi_proquest_journals_1915018606 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial neural networks Change detection Classification Classifiers Climate change Clustering Environmental monitoring High resolution Image classification Image detection Image resolution Land cover Land use management Landsat satellites Learning theory Neural networks Reliability Satellite imagery Support vector machines |
title | Comparison of Accuracy Measures for RS Image Classification using SVM and ANN Classifiers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Accuracy%20Measures%20for%20RS%20Image%20Classification%20using%20SVM%20and%20ANN%20Classifiers&rft.jtitle=International%20journal%20of%20electrical%20and%20computer%20engineering%20(Malacca,%20Malacca)&rft.au=Prasad,%20S.V.S.&rft.date=2017-06-01&rft.volume=7&rft.issue=3&rft.spage=1180&rft.pages=1180-&rft.issn=2088-8708&rft.eissn=2088-8708&rft_id=info:doi/10.11591/ijece.v7i3.pp1180-1187&rft_dat=%3Cproquest_cross%3E1915018606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1915018606&rft_id=info:pmid/&rfr_iscdi=true |