Kinetics of low-temperature steam reforming of propane in a methane excess on a Ni-based catalyst

Systematic studies were performed on low-temperature steam conversion or low-temperature steam reforming (LTSR) of propane in an excess of methane on a Ni-based catalyst. The LTSR of the methane–propane mixture is a two-stage process involving the irreversible steam conversion of propane into carbon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis in industry 2017, Vol.9 (2), p.104-109
Hauptverfasser: Uskov, S. I., Enikeeva, L. V., Potemkin, D. I., Belyaev, V. D., Snytnikov, P. V., Gubaidullin, I. M., Kirillov, V. A., Sobyanin, V. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 109
container_issue 2
container_start_page 104
container_title Catalysis in industry
container_volume 9
creator Uskov, S. I.
Enikeeva, L. V.
Potemkin, D. I.
Belyaev, V. D.
Snytnikov, P. V.
Gubaidullin, I. M.
Kirillov, V. A.
Sobyanin, V. A.
description Systematic studies were performed on low-temperature steam conversion or low-temperature steam reforming (LTSR) of propane in an excess of methane on a Ni-based catalyst. The LTSR of the methane–propane mixture is a two-stage process involving the irreversible steam conversion of propane into carbon dioxide and hydrogen and reversible methanation of carbon dioxide. Above ~250°C, the methanation of carbon dioxide is quasi-equilibrium. The rate of propane conversion during the LTSR of the methane–propane mixture is first-order based on propane; its activation energy is ~120 kJ/mol and is almost independent of the methane, carbon dioxide, hydrogen, and steam concentrations. This very simple macrokinetic scheme allows us to correctly describe the experimental data and predict the temperature and flow rate of the mixture at which complete conversion of propane is achieved.
doi_str_mv 10.1134/S2070050417020118
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1915004619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1915004619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-25d815ab19f31d783f544740074caeedf2a22fcbbeba424815d7cbc9c29e85a23</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouKz7A7wFPFcnaWKboyx-4aIH9Vym6XTtsv0wyaL7702piCDmMsnL876TGcZOBZwLkaqLZwkZgAYlMpAgRH7AZqOUgNb68OcO6pgtvN9APNIYk-Uzhg9NR6Gxnvc13_YfSaB2IIdh54j7QNhyR3Xv2qZbj8jg-gE74k3HkbcU3sYHfVryMWHUHpukRE8Vtxhwu_fhhB3VuPW0-K5z9npz_bK8S1ZPt_fLq1ViU52GROoqFxpLYepUVFme1lqpTAFkyiJRVUuUsrZlSSUqqSJbZba0xkpDuUaZztnZlBu_-L4jH4pNv3NdbFkIIzSAuhQmUmKirOu9j6MVg2tadPtCQDEus_izzOiRk8dHtluT-5X8r-kLeDF10g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1915004619</pqid></control><display><type>article</type><title>Kinetics of low-temperature steam reforming of propane in a methane excess on a Ni-based catalyst</title><source>SpringerLink Journals - AutoHoldings</source><creator>Uskov, S. I. ; Enikeeva, L. V. ; Potemkin, D. I. ; Belyaev, V. D. ; Snytnikov, P. V. ; Gubaidullin, I. M. ; Kirillov, V. A. ; Sobyanin, V. A.</creator><creatorcontrib>Uskov, S. I. ; Enikeeva, L. V. ; Potemkin, D. I. ; Belyaev, V. D. ; Snytnikov, P. V. ; Gubaidullin, I. M. ; Kirillov, V. A. ; Sobyanin, V. A.</creatorcontrib><description>Systematic studies were performed on low-temperature steam conversion or low-temperature steam reforming (LTSR) of propane in an excess of methane on a Ni-based catalyst. The LTSR of the methane–propane mixture is a two-stage process involving the irreversible steam conversion of propane into carbon dioxide and hydrogen and reversible methanation of carbon dioxide. Above ~250°C, the methanation of carbon dioxide is quasi-equilibrium. The rate of propane conversion during the LTSR of the methane–propane mixture is first-order based on propane; its activation energy is ~120 kJ/mol and is almost independent of the methane, carbon dioxide, hydrogen, and steam concentrations. This very simple macrokinetic scheme allows us to correctly describe the experimental data and predict the temperature and flow rate of the mixture at which complete conversion of propane is achieved.</description><identifier>ISSN: 2070-0504</identifier><identifier>EISSN: 2070-0555</identifier><identifier>DOI: 10.1134/S2070050417020118</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Activation energy ; Carbon dioxide ; Catalysis ; Catalysis in Chemical and Petrochemical Industry ; Catalysts ; Chemistry ; Chemistry and Materials Science ; Conversion ; Flow velocity ; Hydrogen ; Low temperature ; Methanation ; Methane ; Propane ; Reaction kinetics ; Reforming</subject><ispartof>Catalysis in industry, 2017, Vol.9 (2), p.104-109</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-25d815ab19f31d783f544740074caeedf2a22fcbbeba424815d7cbc9c29e85a23</citedby><cites>FETCH-LOGICAL-c353t-25d815ab19f31d783f544740074caeedf2a22fcbbeba424815d7cbc9c29e85a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S2070050417020118$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S2070050417020118$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Uskov, S. I.</creatorcontrib><creatorcontrib>Enikeeva, L. V.</creatorcontrib><creatorcontrib>Potemkin, D. I.</creatorcontrib><creatorcontrib>Belyaev, V. D.</creatorcontrib><creatorcontrib>Snytnikov, P. V.</creatorcontrib><creatorcontrib>Gubaidullin, I. M.</creatorcontrib><creatorcontrib>Kirillov, V. A.</creatorcontrib><creatorcontrib>Sobyanin, V. A.</creatorcontrib><title>Kinetics of low-temperature steam reforming of propane in a methane excess on a Ni-based catalyst</title><title>Catalysis in industry</title><addtitle>Catal. Ind</addtitle><description>Systematic studies were performed on low-temperature steam conversion or low-temperature steam reforming (LTSR) of propane in an excess of methane on a Ni-based catalyst. The LTSR of the methane–propane mixture is a two-stage process involving the irreversible steam conversion of propane into carbon dioxide and hydrogen and reversible methanation of carbon dioxide. Above ~250°C, the methanation of carbon dioxide is quasi-equilibrium. The rate of propane conversion during the LTSR of the methane–propane mixture is first-order based on propane; its activation energy is ~120 kJ/mol and is almost independent of the methane, carbon dioxide, hydrogen, and steam concentrations. This very simple macrokinetic scheme allows us to correctly describe the experimental data and predict the temperature and flow rate of the mixture at which complete conversion of propane is achieved.</description><subject>Activation energy</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Catalysis in Chemical and Petrochemical Industry</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Conversion</subject><subject>Flow velocity</subject><subject>Hydrogen</subject><subject>Low temperature</subject><subject>Methanation</subject><subject>Methane</subject><subject>Propane</subject><subject>Reaction kinetics</subject><subject>Reforming</subject><issn>2070-0504</issn><issn>2070-0555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouKz7A7wFPFcnaWKboyx-4aIH9Vym6XTtsv0wyaL7702piCDmMsnL876TGcZOBZwLkaqLZwkZgAYlMpAgRH7AZqOUgNb68OcO6pgtvN9APNIYk-Uzhg9NR6Gxnvc13_YfSaB2IIdh54j7QNhyR3Xv2qZbj8jg-gE74k3HkbcU3sYHfVryMWHUHpukRE8Vtxhwu_fhhB3VuPW0-K5z9npz_bK8S1ZPt_fLq1ViU52GROoqFxpLYepUVFme1lqpTAFkyiJRVUuUsrZlSSUqqSJbZba0xkpDuUaZztnZlBu_-L4jH4pNv3NdbFkIIzSAuhQmUmKirOu9j6MVg2tadPtCQDEus_izzOiRk8dHtluT-5X8r-kLeDF10g</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Uskov, S. I.</creator><creator>Enikeeva, L. V.</creator><creator>Potemkin, D. I.</creator><creator>Belyaev, V. D.</creator><creator>Snytnikov, P. V.</creator><creator>Gubaidullin, I. M.</creator><creator>Kirillov, V. A.</creator><creator>Sobyanin, V. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2017</creationdate><title>Kinetics of low-temperature steam reforming of propane in a methane excess on a Ni-based catalyst</title><author>Uskov, S. I. ; Enikeeva, L. V. ; Potemkin, D. I. ; Belyaev, V. D. ; Snytnikov, P. V. ; Gubaidullin, I. M. ; Kirillov, V. A. ; Sobyanin, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-25d815ab19f31d783f544740074caeedf2a22fcbbeba424815d7cbc9c29e85a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation energy</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Catalysis in Chemical and Petrochemical Industry</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Conversion</topic><topic>Flow velocity</topic><topic>Hydrogen</topic><topic>Low temperature</topic><topic>Methanation</topic><topic>Methane</topic><topic>Propane</topic><topic>Reaction kinetics</topic><topic>Reforming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uskov, S. I.</creatorcontrib><creatorcontrib>Enikeeva, L. V.</creatorcontrib><creatorcontrib>Potemkin, D. I.</creatorcontrib><creatorcontrib>Belyaev, V. D.</creatorcontrib><creatorcontrib>Snytnikov, P. V.</creatorcontrib><creatorcontrib>Gubaidullin, I. M.</creatorcontrib><creatorcontrib>Kirillov, V. A.</creatorcontrib><creatorcontrib>Sobyanin, V. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Catalysis in industry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uskov, S. I.</au><au>Enikeeva, L. V.</au><au>Potemkin, D. I.</au><au>Belyaev, V. D.</au><au>Snytnikov, P. V.</au><au>Gubaidullin, I. M.</au><au>Kirillov, V. A.</au><au>Sobyanin, V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics of low-temperature steam reforming of propane in a methane excess on a Ni-based catalyst</atitle><jtitle>Catalysis in industry</jtitle><stitle>Catal. Ind</stitle><date>2017</date><risdate>2017</risdate><volume>9</volume><issue>2</issue><spage>104</spage><epage>109</epage><pages>104-109</pages><issn>2070-0504</issn><eissn>2070-0555</eissn><abstract>Systematic studies were performed on low-temperature steam conversion or low-temperature steam reforming (LTSR) of propane in an excess of methane on a Ni-based catalyst. The LTSR of the methane–propane mixture is a two-stage process involving the irreversible steam conversion of propane into carbon dioxide and hydrogen and reversible methanation of carbon dioxide. Above ~250°C, the methanation of carbon dioxide is quasi-equilibrium. The rate of propane conversion during the LTSR of the methane–propane mixture is first-order based on propane; its activation energy is ~120 kJ/mol and is almost independent of the methane, carbon dioxide, hydrogen, and steam concentrations. This very simple macrokinetic scheme allows us to correctly describe the experimental data and predict the temperature and flow rate of the mixture at which complete conversion of propane is achieved.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S2070050417020118</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2070-0504
ispartof Catalysis in industry, 2017, Vol.9 (2), p.104-109
issn 2070-0504
2070-0555
language eng
recordid cdi_proquest_journals_1915004619
source SpringerLink Journals - AutoHoldings
subjects Activation energy
Carbon dioxide
Catalysis
Catalysis in Chemical and Petrochemical Industry
Catalysts
Chemistry
Chemistry and Materials Science
Conversion
Flow velocity
Hydrogen
Low temperature
Methanation
Methane
Propane
Reaction kinetics
Reforming
title Kinetics of low-temperature steam reforming of propane in a methane excess on a Ni-based catalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20of%20low-temperature%20steam%20reforming%20of%20propane%20in%20a%20methane%20excess%20on%20a%20Ni-based%20catalyst&rft.jtitle=Catalysis%20in%20industry&rft.au=Uskov,%20S.%20I.&rft.date=2017&rft.volume=9&rft.issue=2&rft.spage=104&rft.epage=109&rft.pages=104-109&rft.issn=2070-0504&rft.eissn=2070-0555&rft_id=info:doi/10.1134/S2070050417020118&rft_dat=%3Cproquest_cross%3E1915004619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1915004619&rft_id=info:pmid/&rfr_iscdi=true