Kinetics of low-temperature steam reforming of propane in a methane excess on a Ni-based catalyst
Systematic studies were performed on low-temperature steam conversion or low-temperature steam reforming (LTSR) of propane in an excess of methane on a Ni-based catalyst. The LTSR of the methane–propane mixture is a two-stage process involving the irreversible steam conversion of propane into carbon...
Gespeichert in:
Veröffentlicht in: | Catalysis in industry 2017, Vol.9 (2), p.104-109 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 109 |
---|---|
container_issue | 2 |
container_start_page | 104 |
container_title | Catalysis in industry |
container_volume | 9 |
creator | Uskov, S. I. Enikeeva, L. V. Potemkin, D. I. Belyaev, V. D. Snytnikov, P. V. Gubaidullin, I. M. Kirillov, V. A. Sobyanin, V. A. |
description | Systematic studies were performed on low-temperature steam conversion or low-temperature steam reforming (LTSR) of propane in an excess of methane on a Ni-based catalyst. The LTSR of the methane–propane mixture is a two-stage process involving the irreversible steam conversion of propane into carbon dioxide and hydrogen and reversible methanation of carbon dioxide. Above ~250°C, the methanation of carbon dioxide is quasi-equilibrium. The rate of propane conversion during the LTSR of the methane–propane mixture is first-order based on propane; its activation energy is ~120 kJ/mol and is almost independent of the methane, carbon dioxide, hydrogen, and steam concentrations. This very simple macrokinetic scheme allows us to correctly describe the experimental data and predict the temperature and flow rate of the mixture at which complete conversion of propane is achieved. |
doi_str_mv | 10.1134/S2070050417020118 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1915004619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1915004619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-25d815ab19f31d783f544740074caeedf2a22fcbbeba424815d7cbc9c29e85a23</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouKz7A7wFPFcnaWKboyx-4aIH9Vym6XTtsv0wyaL7702piCDmMsnL876TGcZOBZwLkaqLZwkZgAYlMpAgRH7AZqOUgNb68OcO6pgtvN9APNIYk-Uzhg9NR6Gxnvc13_YfSaB2IIdh54j7QNhyR3Xv2qZbj8jg-gE74k3HkbcU3sYHfVryMWHUHpukRE8Vtxhwu_fhhB3VuPW0-K5z9npz_bK8S1ZPt_fLq1ViU52GROoqFxpLYepUVFme1lqpTAFkyiJRVUuUsrZlSSUqqSJbZba0xkpDuUaZztnZlBu_-L4jH4pNv3NdbFkIIzSAuhQmUmKirOu9j6MVg2tadPtCQDEus_izzOiRk8dHtluT-5X8r-kLeDF10g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1915004619</pqid></control><display><type>article</type><title>Kinetics of low-temperature steam reforming of propane in a methane excess on a Ni-based catalyst</title><source>SpringerLink Journals - AutoHoldings</source><creator>Uskov, S. I. ; Enikeeva, L. V. ; Potemkin, D. I. ; Belyaev, V. D. ; Snytnikov, P. V. ; Gubaidullin, I. M. ; Kirillov, V. A. ; Sobyanin, V. A.</creator><creatorcontrib>Uskov, S. I. ; Enikeeva, L. V. ; Potemkin, D. I. ; Belyaev, V. D. ; Snytnikov, P. V. ; Gubaidullin, I. M. ; Kirillov, V. A. ; Sobyanin, V. A.</creatorcontrib><description>Systematic studies were performed on low-temperature steam conversion or low-temperature steam reforming (LTSR) of propane in an excess of methane on a Ni-based catalyst. The LTSR of the methane–propane mixture is a two-stage process involving the irreversible steam conversion of propane into carbon dioxide and hydrogen and reversible methanation of carbon dioxide. Above ~250°C, the methanation of carbon dioxide is quasi-equilibrium. The rate of propane conversion during the LTSR of the methane–propane mixture is first-order based on propane; its activation energy is ~120 kJ/mol and is almost independent of the methane, carbon dioxide, hydrogen, and steam concentrations. This very simple macrokinetic scheme allows us to correctly describe the experimental data and predict the temperature and flow rate of the mixture at which complete conversion of propane is achieved.</description><identifier>ISSN: 2070-0504</identifier><identifier>EISSN: 2070-0555</identifier><identifier>DOI: 10.1134/S2070050417020118</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Activation energy ; Carbon dioxide ; Catalysis ; Catalysis in Chemical and Petrochemical Industry ; Catalysts ; Chemistry ; Chemistry and Materials Science ; Conversion ; Flow velocity ; Hydrogen ; Low temperature ; Methanation ; Methane ; Propane ; Reaction kinetics ; Reforming</subject><ispartof>Catalysis in industry, 2017, Vol.9 (2), p.104-109</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-25d815ab19f31d783f544740074caeedf2a22fcbbeba424815d7cbc9c29e85a23</citedby><cites>FETCH-LOGICAL-c353t-25d815ab19f31d783f544740074caeedf2a22fcbbeba424815d7cbc9c29e85a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S2070050417020118$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S2070050417020118$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Uskov, S. I.</creatorcontrib><creatorcontrib>Enikeeva, L. V.</creatorcontrib><creatorcontrib>Potemkin, D. I.</creatorcontrib><creatorcontrib>Belyaev, V. D.</creatorcontrib><creatorcontrib>Snytnikov, P. V.</creatorcontrib><creatorcontrib>Gubaidullin, I. M.</creatorcontrib><creatorcontrib>Kirillov, V. A.</creatorcontrib><creatorcontrib>Sobyanin, V. A.</creatorcontrib><title>Kinetics of low-temperature steam reforming of propane in a methane excess on a Ni-based catalyst</title><title>Catalysis in industry</title><addtitle>Catal. Ind</addtitle><description>Systematic studies were performed on low-temperature steam conversion or low-temperature steam reforming (LTSR) of propane in an excess of methane on a Ni-based catalyst. The LTSR of the methane–propane mixture is a two-stage process involving the irreversible steam conversion of propane into carbon dioxide and hydrogen and reversible methanation of carbon dioxide. Above ~250°C, the methanation of carbon dioxide is quasi-equilibrium. The rate of propane conversion during the LTSR of the methane–propane mixture is first-order based on propane; its activation energy is ~120 kJ/mol and is almost independent of the methane, carbon dioxide, hydrogen, and steam concentrations. This very simple macrokinetic scheme allows us to correctly describe the experimental data and predict the temperature and flow rate of the mixture at which complete conversion of propane is achieved.</description><subject>Activation energy</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Catalysis in Chemical and Petrochemical Industry</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Conversion</subject><subject>Flow velocity</subject><subject>Hydrogen</subject><subject>Low temperature</subject><subject>Methanation</subject><subject>Methane</subject><subject>Propane</subject><subject>Reaction kinetics</subject><subject>Reforming</subject><issn>2070-0504</issn><issn>2070-0555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouKz7A7wFPFcnaWKboyx-4aIH9Vym6XTtsv0wyaL7702piCDmMsnL876TGcZOBZwLkaqLZwkZgAYlMpAgRH7AZqOUgNb68OcO6pgtvN9APNIYk-Uzhg9NR6Gxnvc13_YfSaB2IIdh54j7QNhyR3Xv2qZbj8jg-gE74k3HkbcU3sYHfVryMWHUHpukRE8Vtxhwu_fhhB3VuPW0-K5z9npz_bK8S1ZPt_fLq1ViU52GROoqFxpLYepUVFme1lqpTAFkyiJRVUuUsrZlSSUqqSJbZba0xkpDuUaZztnZlBu_-L4jH4pNv3NdbFkIIzSAuhQmUmKirOu9j6MVg2tadPtCQDEus_izzOiRk8dHtluT-5X8r-kLeDF10g</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Uskov, S. I.</creator><creator>Enikeeva, L. V.</creator><creator>Potemkin, D. I.</creator><creator>Belyaev, V. D.</creator><creator>Snytnikov, P. V.</creator><creator>Gubaidullin, I. M.</creator><creator>Kirillov, V. A.</creator><creator>Sobyanin, V. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2017</creationdate><title>Kinetics of low-temperature steam reforming of propane in a methane excess on a Ni-based catalyst</title><author>Uskov, S. I. ; Enikeeva, L. V. ; Potemkin, D. I. ; Belyaev, V. D. ; Snytnikov, P. V. ; Gubaidullin, I. M. ; Kirillov, V. A. ; Sobyanin, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-25d815ab19f31d783f544740074caeedf2a22fcbbeba424815d7cbc9c29e85a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation energy</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Catalysis in Chemical and Petrochemical Industry</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Conversion</topic><topic>Flow velocity</topic><topic>Hydrogen</topic><topic>Low temperature</topic><topic>Methanation</topic><topic>Methane</topic><topic>Propane</topic><topic>Reaction kinetics</topic><topic>Reforming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uskov, S. I.</creatorcontrib><creatorcontrib>Enikeeva, L. V.</creatorcontrib><creatorcontrib>Potemkin, D. I.</creatorcontrib><creatorcontrib>Belyaev, V. D.</creatorcontrib><creatorcontrib>Snytnikov, P. V.</creatorcontrib><creatorcontrib>Gubaidullin, I. M.</creatorcontrib><creatorcontrib>Kirillov, V. A.</creatorcontrib><creatorcontrib>Sobyanin, V. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Catalysis in industry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uskov, S. I.</au><au>Enikeeva, L. V.</au><au>Potemkin, D. I.</au><au>Belyaev, V. D.</au><au>Snytnikov, P. V.</au><au>Gubaidullin, I. M.</au><au>Kirillov, V. A.</au><au>Sobyanin, V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics of low-temperature steam reforming of propane in a methane excess on a Ni-based catalyst</atitle><jtitle>Catalysis in industry</jtitle><stitle>Catal. Ind</stitle><date>2017</date><risdate>2017</risdate><volume>9</volume><issue>2</issue><spage>104</spage><epage>109</epage><pages>104-109</pages><issn>2070-0504</issn><eissn>2070-0555</eissn><abstract>Systematic studies were performed on low-temperature steam conversion or low-temperature steam reforming (LTSR) of propane in an excess of methane on a Ni-based catalyst. The LTSR of the methane–propane mixture is a two-stage process involving the irreversible steam conversion of propane into carbon dioxide and hydrogen and reversible methanation of carbon dioxide. Above ~250°C, the methanation of carbon dioxide is quasi-equilibrium. The rate of propane conversion during the LTSR of the methane–propane mixture is first-order based on propane; its activation energy is ~120 kJ/mol and is almost independent of the methane, carbon dioxide, hydrogen, and steam concentrations. This very simple macrokinetic scheme allows us to correctly describe the experimental data and predict the temperature and flow rate of the mixture at which complete conversion of propane is achieved.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S2070050417020118</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2070-0504 |
ispartof | Catalysis in industry, 2017, Vol.9 (2), p.104-109 |
issn | 2070-0504 2070-0555 |
language | eng |
recordid | cdi_proquest_journals_1915004619 |
source | SpringerLink Journals - AutoHoldings |
subjects | Activation energy Carbon dioxide Catalysis Catalysis in Chemical and Petrochemical Industry Catalysts Chemistry Chemistry and Materials Science Conversion Flow velocity Hydrogen Low temperature Methanation Methane Propane Reaction kinetics Reforming |
title | Kinetics of low-temperature steam reforming of propane in a methane excess on a Ni-based catalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20of%20low-temperature%20steam%20reforming%20of%20propane%20in%20a%20methane%20excess%20on%20a%20Ni-based%20catalyst&rft.jtitle=Catalysis%20in%20industry&rft.au=Uskov,%20S.%20I.&rft.date=2017&rft.volume=9&rft.issue=2&rft.spage=104&rft.epage=109&rft.pages=104-109&rft.issn=2070-0504&rft.eissn=2070-0555&rft_id=info:doi/10.1134/S2070050417020118&rft_dat=%3Cproquest_cross%3E1915004619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1915004619&rft_id=info:pmid/&rfr_iscdi=true |