Na2SO4–NaCl–H2O system with a binary homogeneous critical point: Phase equilibria at 475–520°C and to 130 MPa

Phase equilibria were studied at temperatures 475–520°C and a pressure to 130 MPa in the ternary system Na 2 SO 4 –NaCl–H 2 O with boundary binary subsystems of two types. In type 1 subsystems (the NaCl–H 2 O subsystem in this work), there are no critical phenomena in saturated solutions. Type 2 sub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of inorganic chemistry 2017-06, Vol.62 (6), p.843-853
Hauptverfasser: Urusova, M. A., Valyashko, V. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 853
container_issue 6
container_start_page 843
container_title Russian journal of inorganic chemistry
container_volume 62
creator Urusova, M. A.
Valyashko, V. M.
description Phase equilibria were studied at temperatures 475–520°C and a pressure to 130 MPa in the ternary system Na 2 SO 4 –NaCl–H 2 O with boundary binary subsystems of two types. In type 1 subsystems (the NaCl–H 2 O subsystem in this work), there are no critical phenomena in saturated solutions. Type 2 subsystems (the Na 2 SO 4 –H 2 O subsystem in this work) have terminal critical points p (G = L – S N a 2 S O 4 ) and Q (L 1 = L 2 – S N a 2 S O 4 ). It was shown that the ternary system contains two regions of three-phase equilibria ((G–L–S) and (L 1 –L 2 –S)), divided by a two-phase fluid region (F – S N a 2 S O 4 ), and two types of monovariant critical curves ((G = L – S N a 2 S O 4 ) and (L 1 = L 2 – S N a 2 S O 4 )). With increasing temperature, these three-phase regions approach each other until the two-phase fluid equilibrium vanishes and the monovariant critical curves meet at a binary homogeneous critical point (G = L–S ⇔ L 1 = L 2 – S N a 2 S O 4 ) at a maximal temperature of ~495°C and a pressure of ~75 MPa.
doi_str_mv 10.1134/S0036023617060250
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1915004209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1915004209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2310-4f79dadb068f58d5b75102627e93dbfafd680f9c0f2805fe2420a138fc569b113</originalsourceid><addsrcrecordid>eNp1kE1KAzEYhoMoWKsHcBdwPfolmcyPOxnUCrUtVNdDZiZpU6aTmmSQ7ryDF_EMHsWTmFIXgrh6F-_Px_cgdE7gkhAWX80BWAKUJSSFoBwO0IBwRqIsIewQDXZ2tPOP0YlzK4A4hjQbID8RdD6Nv97eJ6Jog4zoFLut83KNX7VfYoEr3Qm7xUuzNgvZSdM7XFvtdS1avDG689d4thROYvnS61ZXVgssPI5THuY4hc-PAouuwd5gwgA_zsQpOlKidfLsR4fo-e72qRhF4-n9Q3EzjmrKCESxSvNGNBUkmeJZw6uUE6AJTWXOmkoJ1SQZqLwGRTPgStKYgiAsUzVP8ipgGaKL_e7GmpdeOl-uTG-7cLIkOeEBAoU8pMg-VVvjnJWq3Fi9Di-XBMod3PIP3NCh-44L2W4h7a_lf0vf4bF7ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1915004209</pqid></control><display><type>article</type><title>Na2SO4–NaCl–H2O system with a binary homogeneous critical point: Phase equilibria at 475–520°C and to 130 MPa</title><source>SpringerLink Journals - AutoHoldings</source><creator>Urusova, M. A. ; Valyashko, V. M.</creator><creatorcontrib>Urusova, M. A. ; Valyashko, V. M.</creatorcontrib><description>Phase equilibria were studied at temperatures 475–520°C and a pressure to 130 MPa in the ternary system Na 2 SO 4 –NaCl–H 2 O with boundary binary subsystems of two types. In type 1 subsystems (the NaCl–H 2 O subsystem in this work), there are no critical phenomena in saturated solutions. Type 2 subsystems (the Na 2 SO 4 –H 2 O subsystem in this work) have terminal critical points p (G = L – S N a 2 S O 4 ) and Q (L 1 = L 2 – S N a 2 S O 4 ). It was shown that the ternary system contains two regions of three-phase equilibria ((G–L–S) and (L 1 –L 2 –S)), divided by a two-phase fluid region (F – S N a 2 S O 4 ), and two types of monovariant critical curves ((G = L – S N a 2 S O 4 ) and (L 1 = L 2 – S N a 2 S O 4 )). With increasing temperature, these three-phase regions approach each other until the two-phase fluid equilibrium vanishes and the monovariant critical curves meet at a binary homogeneous critical point (G = L–S ⇔ L 1 = L 2 – S N a 2 S O 4 ) at a maximal temperature of ~495°C and a pressure of ~75 MPa.</description><identifier>ISSN: 0036-0236</identifier><identifier>EISSN: 1531-8613</identifier><identifier>DOI: 10.1134/S0036023617060250</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Chemistry ; Chemistry and Materials Science ; Critical phenomena ; Critical point ; Equilibrium ; Inorganic Chemistry ; Phase equilibria ; Physicochemical Analysis of Inorganic Systems ; Ternary systems</subject><ispartof>Russian journal of inorganic chemistry, 2017-06, Vol.62 (6), p.843-853</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2310-4f79dadb068f58d5b75102627e93dbfafd680f9c0f2805fe2420a138fc569b113</citedby><cites>FETCH-LOGICAL-c2310-4f79dadb068f58d5b75102627e93dbfafd680f9c0f2805fe2420a138fc569b113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0036023617060250$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0036023617060250$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Urusova, M. A.</creatorcontrib><creatorcontrib>Valyashko, V. M.</creatorcontrib><title>Na2SO4–NaCl–H2O system with a binary homogeneous critical point: Phase equilibria at 475–520°C and to 130 MPa</title><title>Russian journal of inorganic chemistry</title><addtitle>Russ. J. Inorg. Chem</addtitle><description>Phase equilibria were studied at temperatures 475–520°C and a pressure to 130 MPa in the ternary system Na 2 SO 4 –NaCl–H 2 O with boundary binary subsystems of two types. In type 1 subsystems (the NaCl–H 2 O subsystem in this work), there are no critical phenomena in saturated solutions. Type 2 subsystems (the Na 2 SO 4 –H 2 O subsystem in this work) have terminal critical points p (G = L – S N a 2 S O 4 ) and Q (L 1 = L 2 – S N a 2 S O 4 ). It was shown that the ternary system contains two regions of three-phase equilibria ((G–L–S) and (L 1 –L 2 –S)), divided by a two-phase fluid region (F – S N a 2 S O 4 ), and two types of monovariant critical curves ((G = L – S N a 2 S O 4 ) and (L 1 = L 2 – S N a 2 S O 4 )). With increasing temperature, these three-phase regions approach each other until the two-phase fluid equilibrium vanishes and the monovariant critical curves meet at a binary homogeneous critical point (G = L–S ⇔ L 1 = L 2 – S N a 2 S O 4 ) at a maximal temperature of ~495°C and a pressure of ~75 MPa.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Critical phenomena</subject><subject>Critical point</subject><subject>Equilibrium</subject><subject>Inorganic Chemistry</subject><subject>Phase equilibria</subject><subject>Physicochemical Analysis of Inorganic Systems</subject><subject>Ternary systems</subject><issn>0036-0236</issn><issn>1531-8613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1KAzEYhoMoWKsHcBdwPfolmcyPOxnUCrUtVNdDZiZpU6aTmmSQ7ryDF_EMHsWTmFIXgrh6F-_Px_cgdE7gkhAWX80BWAKUJSSFoBwO0IBwRqIsIewQDXZ2tPOP0YlzK4A4hjQbID8RdD6Nv97eJ6Jog4zoFLut83KNX7VfYoEr3Qm7xUuzNgvZSdM7XFvtdS1avDG689d4thROYvnS61ZXVgssPI5THuY4hc-PAouuwd5gwgA_zsQpOlKidfLsR4fo-e72qRhF4-n9Q3EzjmrKCESxSvNGNBUkmeJZw6uUE6AJTWXOmkoJ1SQZqLwGRTPgStKYgiAsUzVP8ipgGaKL_e7GmpdeOl-uTG-7cLIkOeEBAoU8pMg-VVvjnJWq3Fi9Di-XBMod3PIP3NCh-44L2W4h7a_lf0vf4bF7ag</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Urusova, M. A.</creator><creator>Valyashko, V. M.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170601</creationdate><title>Na2SO4–NaCl–H2O system with a binary homogeneous critical point: Phase equilibria at 475–520°C and to 130 MPa</title><author>Urusova, M. A. ; Valyashko, V. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2310-4f79dadb068f58d5b75102627e93dbfafd680f9c0f2805fe2420a138fc569b113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Critical phenomena</topic><topic>Critical point</topic><topic>Equilibrium</topic><topic>Inorganic Chemistry</topic><topic>Phase equilibria</topic><topic>Physicochemical Analysis of Inorganic Systems</topic><topic>Ternary systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urusova, M. A.</creatorcontrib><creatorcontrib>Valyashko, V. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urusova, M. A.</au><au>Valyashko, V. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Na2SO4–NaCl–H2O system with a binary homogeneous critical point: Phase equilibria at 475–520°C and to 130 MPa</atitle><jtitle>Russian journal of inorganic chemistry</jtitle><stitle>Russ. J. Inorg. Chem</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>62</volume><issue>6</issue><spage>843</spage><epage>853</epage><pages>843-853</pages><issn>0036-0236</issn><eissn>1531-8613</eissn><abstract>Phase equilibria were studied at temperatures 475–520°C and a pressure to 130 MPa in the ternary system Na 2 SO 4 –NaCl–H 2 O with boundary binary subsystems of two types. In type 1 subsystems (the NaCl–H 2 O subsystem in this work), there are no critical phenomena in saturated solutions. Type 2 subsystems (the Na 2 SO 4 –H 2 O subsystem in this work) have terminal critical points p (G = L – S N a 2 S O 4 ) and Q (L 1 = L 2 – S N a 2 S O 4 ). It was shown that the ternary system contains two regions of three-phase equilibria ((G–L–S) and (L 1 –L 2 –S)), divided by a two-phase fluid region (F – S N a 2 S O 4 ), and two types of monovariant critical curves ((G = L – S N a 2 S O 4 ) and (L 1 = L 2 – S N a 2 S O 4 )). With increasing temperature, these three-phase regions approach each other until the two-phase fluid equilibrium vanishes and the monovariant critical curves meet at a binary homogeneous critical point (G = L–S ⇔ L 1 = L 2 – S N a 2 S O 4 ) at a maximal temperature of ~495°C and a pressure of ~75 MPa.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0036023617060250</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-0236
ispartof Russian journal of inorganic chemistry, 2017-06, Vol.62 (6), p.843-853
issn 0036-0236
1531-8613
language eng
recordid cdi_proquest_journals_1915004209
source SpringerLink Journals - AutoHoldings
subjects Chemistry
Chemistry and Materials Science
Critical phenomena
Critical point
Equilibrium
Inorganic Chemistry
Phase equilibria
Physicochemical Analysis of Inorganic Systems
Ternary systems
title Na2SO4–NaCl–H2O system with a binary homogeneous critical point: Phase equilibria at 475–520°C and to 130 MPa
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A13%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Na2SO4%E2%80%93NaCl%E2%80%93H2O%20system%20with%20a%20binary%20homogeneous%20critical%20point:%20Phase%20equilibria%20at%20475%E2%80%93520%C2%B0C%20and%20to%20130%20MPa&rft.jtitle=Russian%20journal%20of%20inorganic%20chemistry&rft.au=Urusova,%20M.%20A.&rft.date=2017-06-01&rft.volume=62&rft.issue=6&rft.spage=843&rft.epage=853&rft.pages=843-853&rft.issn=0036-0236&rft.eissn=1531-8613&rft_id=info:doi/10.1134/S0036023617060250&rft_dat=%3Cproquest_cross%3E1915004209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1915004209&rft_id=info:pmid/&rfr_iscdi=true