Large deflection analysis of nanowires based on nonlocal theory using total Lagrangian finite element method

A model based on a nonlocal theory is developed for the large deflection analysis of nanowires for the first time. The nonlocal differential equation of Eringen is used as the nonlocal constitutive equation. Shear deformation is introduced by using the Timoshenko beam theory. The governing equations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2017-07, Vol.228 (7), p.2429-2442
Hauptverfasser: Taghipour, Yasser, Baradaran, Gholam Hossein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2442
container_issue 7
container_start_page 2429
container_title Acta mechanica
container_volume 228
creator Taghipour, Yasser
Baradaran, Gholam Hossein
description A model based on a nonlocal theory is developed for the large deflection analysis of nanowires for the first time. The nonlocal differential equation of Eringen is used as the nonlocal constitutive equation. Shear deformation is introduced by using the Timoshenko beam theory. The governing equations are derived by the variational formulation. The total Lagrangian finite element formulation is applied as a numerical method for the solution of the problem. In addition, a novel approach is used to overcome the difficulty in modeling concentrated loads on a nanowire with nonlocal theory. Several examples are presented for both of the small and large deflections. The numerical results for small deflections are verified with the results reported in the literature. The numerical results for large deflections can be used as benchmark.
doi_str_mv 10.1007/s00707-017-1837-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1914771006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A523214232</galeid><sourcerecordid>A523214232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-f16ee589f1def181b423e25dad8b2ec92241b957f7ebea06b1386a7a22191ff23</originalsourceid><addsrcrecordid>eNp1UU1LxDAQDaLguvoDvAU8VzPptmmPIn7Bghc9h2k76WbpJppkkf33ZqkHLzIwk0zeG97kMXYN4haEUHcxJ6EKAaqApsyHE7aAGtqibkt1yhZCCCiqVolzdhHjNt-kWsGCTWsMI_GBzER9st5xdDgdoo3cG-7Q-W8bKPIOIw08PzvvJt_jxNOGfDjwfbRu5Mmn3FrjGNCNFh031tlEnCbakUt8R2njh0t2ZnCKdPVbl-zj6fH94aVYvz2_Ptyvi76sqlQYqImqpjWQZUED3UqWJKsBh6aT1LdSrqBrK2UUdYSi7qBsalQoJbRgjCyX7Gae-xn8155i0lu_D3mvqDNipVT-sjqjbmfUiBNp64xPAfscA-1s7x0Zm_v3lSwlZAXHsTAT-uBjDGT0Z7A7DAcNQh9d0LMLOrugjy5okTly5sSMdSOFP1L-Jf0Aud6LUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1914771006</pqid></control><display><type>article</type><title>Large deflection analysis of nanowires based on nonlocal theory using total Lagrangian finite element method</title><source>SpringerLink Journals - AutoHoldings</source><creator>Taghipour, Yasser ; Baradaran, Gholam Hossein</creator><creatorcontrib>Taghipour, Yasser ; Baradaran, Gholam Hossein</creatorcontrib><description>A model based on a nonlocal theory is developed for the large deflection analysis of nanowires for the first time. The nonlocal differential equation of Eringen is used as the nonlocal constitutive equation. Shear deformation is introduced by using the Timoshenko beam theory. The governing equations are derived by the variational formulation. The total Lagrangian finite element formulation is applied as a numerical method for the solution of the problem. In addition, a novel approach is used to overcome the difficulty in modeling concentrated loads on a nanowire with nonlocal theory. Several examples are presented for both of the small and large deflections. The numerical results for small deflections are verified with the results reported in the literature. The numerical results for large deflections can be used as benchmark.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-017-1837-0</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Analysis ; Beam theory (structures) ; Classical and Continuum Physics ; Concentrated loads ; Control ; Deflection ; Differential equations ; Dynamical Systems ; Engineering ; Engineering Thermodynamics ; Finite element analysis ; Finite element method ; Heat and Mass Transfer ; Lagrange multiplier ; Mathematical analysis ; Mathematical models ; Methods ; Nanowires ; Numerical analysis ; Original Paper ; Shear deformation ; Solid Mechanics ; Theoretical and Applied Mechanics ; Theory ; Vibration</subject><ispartof>Acta mechanica, 2017-07, Vol.228 (7), p.2429-2442</ispartof><rights>Springer-Verlag Wien 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Acta Mechanica is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-f16ee589f1def181b423e25dad8b2ec92241b957f7ebea06b1386a7a22191ff23</citedby><cites>FETCH-LOGICAL-c355t-f16ee589f1def181b423e25dad8b2ec92241b957f7ebea06b1386a7a22191ff23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-017-1837-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-017-1837-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Taghipour, Yasser</creatorcontrib><creatorcontrib>Baradaran, Gholam Hossein</creatorcontrib><title>Large deflection analysis of nanowires based on nonlocal theory using total Lagrangian finite element method</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>A model based on a nonlocal theory is developed for the large deflection analysis of nanowires for the first time. The nonlocal differential equation of Eringen is used as the nonlocal constitutive equation. Shear deformation is introduced by using the Timoshenko beam theory. The governing equations are derived by the variational formulation. The total Lagrangian finite element formulation is applied as a numerical method for the solution of the problem. In addition, a novel approach is used to overcome the difficulty in modeling concentrated loads on a nanowire with nonlocal theory. Several examples are presented for both of the small and large deflections. The numerical results for small deflections are verified with the results reported in the literature. The numerical results for large deflections can be used as benchmark.</description><subject>Analysis</subject><subject>Beam theory (structures)</subject><subject>Classical and Continuum Physics</subject><subject>Concentrated loads</subject><subject>Control</subject><subject>Deflection</subject><subject>Differential equations</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Heat and Mass Transfer</subject><subject>Lagrange multiplier</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Nanowires</subject><subject>Numerical analysis</subject><subject>Original Paper</subject><subject>Shear deformation</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Theory</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UU1LxDAQDaLguvoDvAU8VzPptmmPIn7Bghc9h2k76WbpJppkkf33ZqkHLzIwk0zeG97kMXYN4haEUHcxJ6EKAaqApsyHE7aAGtqibkt1yhZCCCiqVolzdhHjNt-kWsGCTWsMI_GBzER9st5xdDgdoo3cG-7Q-W8bKPIOIw08PzvvJt_jxNOGfDjwfbRu5Mmn3FrjGNCNFh031tlEnCbakUt8R2njh0t2ZnCKdPVbl-zj6fH94aVYvz2_Ptyvi76sqlQYqImqpjWQZUED3UqWJKsBh6aT1LdSrqBrK2UUdYSi7qBsalQoJbRgjCyX7Gae-xn8155i0lu_D3mvqDNipVT-sjqjbmfUiBNp64xPAfscA-1s7x0Zm_v3lSwlZAXHsTAT-uBjDGT0Z7A7DAcNQh9d0LMLOrugjy5okTly5sSMdSOFP1L-Jf0Aud6LUA</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Taghipour, Yasser</creator><creator>Baradaran, Gholam Hossein</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20170701</creationdate><title>Large deflection analysis of nanowires based on nonlocal theory using total Lagrangian finite element method</title><author>Taghipour, Yasser ; Baradaran, Gholam Hossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-f16ee589f1def181b423e25dad8b2ec92241b957f7ebea06b1386a7a22191ff23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Beam theory (structures)</topic><topic>Classical and Continuum Physics</topic><topic>Concentrated loads</topic><topic>Control</topic><topic>Deflection</topic><topic>Differential equations</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Heat and Mass Transfer</topic><topic>Lagrange multiplier</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Nanowires</topic><topic>Numerical analysis</topic><topic>Original Paper</topic><topic>Shear deformation</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Theory</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taghipour, Yasser</creatorcontrib><creatorcontrib>Baradaran, Gholam Hossein</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taghipour, Yasser</au><au>Baradaran, Gholam Hossein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large deflection analysis of nanowires based on nonlocal theory using total Lagrangian finite element method</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>228</volume><issue>7</issue><spage>2429</spage><epage>2442</epage><pages>2429-2442</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>A model based on a nonlocal theory is developed for the large deflection analysis of nanowires for the first time. The nonlocal differential equation of Eringen is used as the nonlocal constitutive equation. Shear deformation is introduced by using the Timoshenko beam theory. The governing equations are derived by the variational formulation. The total Lagrangian finite element formulation is applied as a numerical method for the solution of the problem. In addition, a novel approach is used to overcome the difficulty in modeling concentrated loads on a nanowire with nonlocal theory. Several examples are presented for both of the small and large deflections. The numerical results for small deflections are verified with the results reported in the literature. The numerical results for large deflections can be used as benchmark.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-017-1837-0</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2017-07, Vol.228 (7), p.2429-2442
issn 0001-5970
1619-6937
language eng
recordid cdi_proquest_journals_1914771006
source SpringerLink Journals - AutoHoldings
subjects Analysis
Beam theory (structures)
Classical and Continuum Physics
Concentrated loads
Control
Deflection
Differential equations
Dynamical Systems
Engineering
Engineering Thermodynamics
Finite element analysis
Finite element method
Heat and Mass Transfer
Lagrange multiplier
Mathematical analysis
Mathematical models
Methods
Nanowires
Numerical analysis
Original Paper
Shear deformation
Solid Mechanics
Theoretical and Applied Mechanics
Theory
Vibration
title Large deflection analysis of nanowires based on nonlocal theory using total Lagrangian finite element method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A55%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20deflection%20analysis%20of%20nanowires%20based%20on%20nonlocal%20theory%20using%20total%20Lagrangian%20finite%20element%20method&rft.jtitle=Acta%20mechanica&rft.au=Taghipour,%20Yasser&rft.date=2017-07-01&rft.volume=228&rft.issue=7&rft.spage=2429&rft.epage=2442&rft.pages=2429-2442&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-017-1837-0&rft_dat=%3Cgale_proqu%3EA523214232%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1914771006&rft_id=info:pmid/&rft_galeid=A523214232&rfr_iscdi=true