Tracking rates of random walks

We show that simple random walks on (non-trivial) relatively hyperbolic groups stay O (log( n ))-close to geodesics, where n is the number of steps of the walk. Using similar techniques we show that simple random walks in mapping class groups stay O ( n log ( n ) ) -close to geodesics and hierarchy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2017-06, Vol.220 (1), p.1-28
1. Verfasser: Sisto, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue 1
container_start_page 1
container_title Israel journal of mathematics
container_volume 220
creator Sisto, Alessandro
description We show that simple random walks on (non-trivial) relatively hyperbolic groups stay O (log( n ))-close to geodesics, where n is the number of steps of the walk. Using similar techniques we show that simple random walks in mapping class groups stay O ( n log ( n ) ) -close to geodesics and hierarchy paths. Along the way, we also prove a refinement of the result that mapping class groups have quadratic divergence. An application of our theorem for relatively hyperbolic groups is that random triangles in non-trivial relatively hyperbolic groups are O (log( n ))-thin, random points have O (log( n ))-small Gromov product and that in many cases the average Dehn function is subasymptotic to the Dehn function.
doi_str_mv 10.1007/s11856-017-1508-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1914590158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1914590158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7da450fa19e2ab67ee2105390e40bf278cdccfe02477b2404b148c00dffab27b3</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKs_wI0MuI6-l0kmyVKKVqHgpq5DkklKv2ZqMkX896aMCzeu3lvccy8cQm4RHhBAPmZEJRoKKCkKUFSfkQmKRlAlEM_JBIAhZSjZJbnKeQMgaon1hNwtk_Xbdbeqkh1CrvpYnq7t99WX3W3zNbmIdpfDze-dko-X5-XslS7e52-zpwX1NTYDla3lAqJFHZh1jQyBYVnQEDi4yKTyrfcxAONSOsaBO-TKA7QxWsekq6fkfuw9pP7zGPJgNv0xdWXSoEYuNKBQJYVjyqc-5xSiOaT13qZvg2BOGsyowRQN5qTB6MKwkckl261C-tP8L_QDfTZd5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1914590158</pqid></control><display><type>article</type><title>Tracking rates of random walks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sisto, Alessandro</creator><creatorcontrib>Sisto, Alessandro</creatorcontrib><description>We show that simple random walks on (non-trivial) relatively hyperbolic groups stay O (log( n ))-close to geodesics, where n is the number of steps of the walk. Using similar techniques we show that simple random walks in mapping class groups stay O ( n log ( n ) ) -close to geodesics and hierarchy paths. Along the way, we also prove a refinement of the result that mapping class groups have quadratic divergence. An application of our theorem for relatively hyperbolic groups is that random triangles in non-trivial relatively hyperbolic groups are O (log( n ))-thin, random points have O (log( n ))-small Gromov product and that in many cases the average Dehn function is subasymptotic to the Dehn function.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-017-1508-9</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Divergence ; Geodesy ; Group Theory and Generalizations ; Mapping ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Random walk ; Random walk theory ; Theoretical ; Triangles</subject><ispartof>Israel journal of mathematics, 2017-06, Vol.220 (1), p.1-28</ispartof><rights>Hebrew University of Jerusalem 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7da450fa19e2ab67ee2105390e40bf278cdccfe02477b2404b148c00dffab27b3</citedby><cites>FETCH-LOGICAL-c316t-7da450fa19e2ab67ee2105390e40bf278cdccfe02477b2404b148c00dffab27b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11856-017-1508-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11856-017-1508-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Sisto, Alessandro</creatorcontrib><title>Tracking rates of random walks</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>We show that simple random walks on (non-trivial) relatively hyperbolic groups stay O (log( n ))-close to geodesics, where n is the number of steps of the walk. Using similar techniques we show that simple random walks in mapping class groups stay O ( n log ( n ) ) -close to geodesics and hierarchy paths. Along the way, we also prove a refinement of the result that mapping class groups have quadratic divergence. An application of our theorem for relatively hyperbolic groups is that random triangles in non-trivial relatively hyperbolic groups are O (log( n ))-thin, random points have O (log( n ))-small Gromov product and that in many cases the average Dehn function is subasymptotic to the Dehn function.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Divergence</subject><subject>Geodesy</subject><subject>Group Theory and Generalizations</subject><subject>Mapping</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>Theoretical</subject><subject>Triangles</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMoWKs_wI0MuI6-l0kmyVKKVqHgpq5DkklKv2ZqMkX896aMCzeu3lvccy8cQm4RHhBAPmZEJRoKKCkKUFSfkQmKRlAlEM_JBIAhZSjZJbnKeQMgaon1hNwtk_Xbdbeqkh1CrvpYnq7t99WX3W3zNbmIdpfDze-dko-X5-XslS7e52-zpwX1NTYDla3lAqJFHZh1jQyBYVnQEDi4yKTyrfcxAONSOsaBO-TKA7QxWsekq6fkfuw9pP7zGPJgNv0xdWXSoEYuNKBQJYVjyqc-5xSiOaT13qZvg2BOGsyowRQN5qTB6MKwkckl261C-tP8L_QDfTZd5w</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Sisto, Alessandro</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170601</creationdate><title>Tracking rates of random walks</title><author>Sisto, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7da450fa19e2ab67ee2105390e40bf278cdccfe02477b2404b148c00dffab27b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Divergence</topic><topic>Geodesy</topic><topic>Group Theory and Generalizations</topic><topic>Mapping</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>Theoretical</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sisto, Alessandro</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sisto, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking rates of random walks</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>220</volume><issue>1</issue><spage>1</spage><epage>28</epage><pages>1-28</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>We show that simple random walks on (non-trivial) relatively hyperbolic groups stay O (log( n ))-close to geodesics, where n is the number of steps of the walk. Using similar techniques we show that simple random walks in mapping class groups stay O ( n log ( n ) ) -close to geodesics and hierarchy paths. Along the way, we also prove a refinement of the result that mapping class groups have quadratic divergence. An application of our theorem for relatively hyperbolic groups is that random triangles in non-trivial relatively hyperbolic groups are O (log( n ))-thin, random points have O (log( n ))-small Gromov product and that in many cases the average Dehn function is subasymptotic to the Dehn function.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-017-1508-9</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-2172
ispartof Israel journal of mathematics, 2017-06, Vol.220 (1), p.1-28
issn 0021-2172
1565-8511
language eng
recordid cdi_proquest_journals_1914590158
source SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Applications of Mathematics
Divergence
Geodesy
Group Theory and Generalizations
Mapping
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Random walk
Random walk theory
Theoretical
Triangles
title Tracking rates of random walks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20rates%20of%20random%20walks&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Sisto,%20Alessandro&rft.date=2017-06-01&rft.volume=220&rft.issue=1&rft.spage=1&rft.epage=28&rft.pages=1-28&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-017-1508-9&rft_dat=%3Cproquest_cross%3E1914590158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1914590158&rft_id=info:pmid/&rfr_iscdi=true