Fjord light regime: Bio‐optical variability, absorption budget, and hyperspectral light availability in Sognefjord and Trondheimsfjord, Norway
Optically active constituents (OACs) in addition to water molecules attenuate light via processes of absorption and scattering and thereby determine underwater light availability. An analysis of their optical properties helps in determining the contribution of each of these to light attenuation. Wit...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Oceans 2017-05, Vol.122 (5), p.3828-3847 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3847 |
---|---|
container_issue | 5 |
container_start_page | 3828 |
container_title | Journal of geophysical research. Oceans |
container_volume | 122 |
creator | Mascarenhas, V. J. Voß, D. Wollschlaeger, J. Zielinski, O. |
description | Optically active constituents (OACs) in addition to water molecules attenuate light via processes of absorption and scattering and thereby determine underwater light availability. An analysis of their optical properties helps in determining the contribution of each of these to light attenuation. With an aim to study the bio‐optical variability, absorption budget and 1% spectral light availability, hydrographical (temperature and salinity), and hyperspectral optical (downwelling irradiance and upwelling radiance) profiles were measured along fjord transects in Sognefjord and Trondheimsfjord, Norway. Optical water quality observations were also performed using Secchi disc and Forel‐Ule scale. In concurrence, water samples were collected and analyzed via visible spectrophotometry, fluorometry, and gravimetry to quantify and derive inherent optical properties of the water constituents. An absorption model (R2 = 0.91, n = 36, p |
doi_str_mv | 10.1002/2016JC012610 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1914013846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1914013846</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3319-cb1f5569b7f74199f065de228d60dca55b36c871f8c2204a95626084d1e4c3c23</originalsourceid><addsrcrecordid>eNpNUEtOwzAQtRBIVKU7DmCJbQMeJ3FidlDRQlWBBGUdObaTukrj4KStsuMIPSMnIf0IMZsZvXkf6SF0DeQWCKF3lACbjghQBuQM9Sgw7nHK4fzvjsJLNKjrJekmhjgIeA_txkvrFC5Mvmiw07lZ6Xv8aOzP985WjZGiwBvhjEhNYZp2iEVaW9c9bInTtcp100Glwou20q6utGxcpzi6iY0wxUmITYk_bF7q7BC3l8ydLdVCm1V9wIb41bqtaK_QRSaKWg9Ou48-x0_z0bM3e5u8jB5mnvB94J5MIQtDxtMoiwLgPCMsVJrSWDGipAjD1GcyjiCLJaUkEDxklJE4UKAD6Uvq99HN0bdy9mut6yZZ2rUru8gEOAQE_DhgHcs_sram0G1SObMSrk2AJPvOk_-dJ9PJ-4hSyrj_CzYFeFs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1914013846</pqid></control><display><type>article</type><title>Fjord light regime: Bio‐optical variability, absorption budget, and hyperspectral light availability in Sognefjord and Trondheimsfjord, Norway</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Alma/SFX Local Collection</source><creator>Mascarenhas, V. J. ; Voß, D. ; Wollschlaeger, J. ; Zielinski, O.</creator><creatorcontrib>Mascarenhas, V. J. ; Voß, D. ; Wollschlaeger, J. ; Zielinski, O.</creatorcontrib><description>Optically active constituents (OACs) in addition to water molecules attenuate light via processes of absorption and scattering and thereby determine underwater light availability. An analysis of their optical properties helps in determining the contribution of each of these to light attenuation. With an aim to study the bio‐optical variability, absorption budget and 1% spectral light availability, hydrographical (temperature and salinity), and hyperspectral optical (downwelling irradiance and upwelling radiance) profiles were measured along fjord transects in Sognefjord and Trondheimsfjord, Norway. Optical water quality observations were also performed using Secchi disc and Forel‐Ule scale. In concurrence, water samples were collected and analyzed via visible spectrophotometry, fluorometry, and gravimetry to quantify and derive inherent optical properties of the water constituents. An absorption model (R2 = 0.91, n = 36, p < 0.05) as a function of OACs is developed for Sognefjord using multiple regression analysis. Influenced by glacial meltwater, Sognefjord had higher concentration of inorganic suspended matter, while Trondheimsfjord had higher concentrations of CDOM. Increase in turbidity caused increased attenuation of light upstream, as a result of which the euphotic depth decreased from outer to inner fjord sections. Triangular representation of absorption budget revealed dominant absorption by CDOM at 443–555 nm, while that by phytoplankton at 665 nm. Sognefjord however exhibited much greater optical complexity. A significantly strong correlation between salinity and acdom440 is used to develop an algorithm to estimate acdom440 using salinity in Trondheimsfjord.
Key Points
Euphotic depth decreases from outer to inner fjord sections
Light availability curves are V shaped in the turbid fjord sections and U shaped in others
Sognefjord and Trondheimsfjord exhibit bio‐optical variability</description><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1002/2016JC012610</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Absorption ; Attenuation ; Availability ; Budgeting ; Budgets ; case 2 ; Complexity ; Correlation ; Depth ; Dissolved organic matter ; Downwelling ; Fjords ; Fluorometers ; Fluorometry ; Geophysics ; Glacier melting ; Gravimetric analysis ; Gravimetry ; Irradiance ; Light ; Light attenuation ; Mathematical models ; Meltwater ; Multiple regression analysis ; Ocean circulation ; ocean color ; Optical activity ; Optical properties ; optically active constituents ; PAR ; Phytoplankton ; Properties ; Radiance ; Regression analysis ; Salinity ; Salinity effects ; Scattering ; Spectrophotometry ; Suspended inorganic matter ; Suspended matter ; Temperature ; Temperature effects ; Turbidity ; Underwater ; underwater light field ; Upstream ; Upwelling ; Variability ; Water analysis ; Water chemistry ; Water quality ; Water sampling</subject><ispartof>Journal of geophysical research. Oceans, 2017-05, Vol.122 (5), p.3828-3847</ispartof><rights>2017. The Authors.</rights><rights>2017. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3319-cb1f5569b7f74199f065de228d60dca55b36c871f8c2204a95626084d1e4c3c23</citedby><orcidid>0000-0001-5387-9491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016JC012610$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016JC012610$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Mascarenhas, V. J.</creatorcontrib><creatorcontrib>Voß, D.</creatorcontrib><creatorcontrib>Wollschlaeger, J.</creatorcontrib><creatorcontrib>Zielinski, O.</creatorcontrib><title>Fjord light regime: Bio‐optical variability, absorption budget, and hyperspectral light availability in Sognefjord and Trondheimsfjord, Norway</title><title>Journal of geophysical research. Oceans</title><description>Optically active constituents (OACs) in addition to water molecules attenuate light via processes of absorption and scattering and thereby determine underwater light availability. An analysis of their optical properties helps in determining the contribution of each of these to light attenuation. With an aim to study the bio‐optical variability, absorption budget and 1% spectral light availability, hydrographical (temperature and salinity), and hyperspectral optical (downwelling irradiance and upwelling radiance) profiles were measured along fjord transects in Sognefjord and Trondheimsfjord, Norway. Optical water quality observations were also performed using Secchi disc and Forel‐Ule scale. In concurrence, water samples were collected and analyzed via visible spectrophotometry, fluorometry, and gravimetry to quantify and derive inherent optical properties of the water constituents. An absorption model (R2 = 0.91, n = 36, p < 0.05) as a function of OACs is developed for Sognefjord using multiple regression analysis. Influenced by glacial meltwater, Sognefjord had higher concentration of inorganic suspended matter, while Trondheimsfjord had higher concentrations of CDOM. Increase in turbidity caused increased attenuation of light upstream, as a result of which the euphotic depth decreased from outer to inner fjord sections. Triangular representation of absorption budget revealed dominant absorption by CDOM at 443–555 nm, while that by phytoplankton at 665 nm. Sognefjord however exhibited much greater optical complexity. A significantly strong correlation between salinity and acdom440 is used to develop an algorithm to estimate acdom440 using salinity in Trondheimsfjord.
Key Points
Euphotic depth decreases from outer to inner fjord sections
Light availability curves are V shaped in the turbid fjord sections and U shaped in others
Sognefjord and Trondheimsfjord exhibit bio‐optical variability</description><subject>Absorption</subject><subject>Attenuation</subject><subject>Availability</subject><subject>Budgeting</subject><subject>Budgets</subject><subject>case 2</subject><subject>Complexity</subject><subject>Correlation</subject><subject>Depth</subject><subject>Dissolved organic matter</subject><subject>Downwelling</subject><subject>Fjords</subject><subject>Fluorometers</subject><subject>Fluorometry</subject><subject>Geophysics</subject><subject>Glacier melting</subject><subject>Gravimetric analysis</subject><subject>Gravimetry</subject><subject>Irradiance</subject><subject>Light</subject><subject>Light attenuation</subject><subject>Mathematical models</subject><subject>Meltwater</subject><subject>Multiple regression analysis</subject><subject>Ocean circulation</subject><subject>ocean color</subject><subject>Optical activity</subject><subject>Optical properties</subject><subject>optically active constituents</subject><subject>PAR</subject><subject>Phytoplankton</subject><subject>Properties</subject><subject>Radiance</subject><subject>Regression analysis</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Scattering</subject><subject>Spectrophotometry</subject><subject>Suspended inorganic matter</subject><subject>Suspended matter</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Turbidity</subject><subject>Underwater</subject><subject>underwater light field</subject><subject>Upstream</subject><subject>Upwelling</subject><subject>Variability</subject><subject>Water analysis</subject><subject>Water chemistry</subject><subject>Water quality</subject><subject>Water sampling</subject><issn>2169-9275</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNpNUEtOwzAQtRBIVKU7DmCJbQMeJ3FidlDRQlWBBGUdObaTukrj4KStsuMIPSMnIf0IMZsZvXkf6SF0DeQWCKF3lACbjghQBuQM9Sgw7nHK4fzvjsJLNKjrJekmhjgIeA_txkvrFC5Mvmiw07lZ6Xv8aOzP985WjZGiwBvhjEhNYZp2iEVaW9c9bInTtcp100Glwou20q6utGxcpzi6iY0wxUmITYk_bF7q7BC3l8ydLdVCm1V9wIb41bqtaK_QRSaKWg9Ou48-x0_z0bM3e5u8jB5mnvB94J5MIQtDxtMoiwLgPCMsVJrSWDGipAjD1GcyjiCLJaUkEDxklJE4UKAD6Uvq99HN0bdy9mut6yZZ2rUru8gEOAQE_DhgHcs_sram0G1SObMSrk2AJPvOk_-dJ9PJ-4hSyrj_CzYFeFs</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Mascarenhas, V. J.</creator><creator>Voß, D.</creator><creator>Wollschlaeger, J.</creator><creator>Zielinski, O.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-5387-9491</orcidid></search><sort><creationdate>201705</creationdate><title>Fjord light regime: Bio‐optical variability, absorption budget, and hyperspectral light availability in Sognefjord and Trondheimsfjord, Norway</title><author>Mascarenhas, V. J. ; Voß, D. ; Wollschlaeger, J. ; Zielinski, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3319-cb1f5569b7f74199f065de228d60dca55b36c871f8c2204a95626084d1e4c3c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Absorption</topic><topic>Attenuation</topic><topic>Availability</topic><topic>Budgeting</topic><topic>Budgets</topic><topic>case 2</topic><topic>Complexity</topic><topic>Correlation</topic><topic>Depth</topic><topic>Dissolved organic matter</topic><topic>Downwelling</topic><topic>Fjords</topic><topic>Fluorometers</topic><topic>Fluorometry</topic><topic>Geophysics</topic><topic>Glacier melting</topic><topic>Gravimetric analysis</topic><topic>Gravimetry</topic><topic>Irradiance</topic><topic>Light</topic><topic>Light attenuation</topic><topic>Mathematical models</topic><topic>Meltwater</topic><topic>Multiple regression analysis</topic><topic>Ocean circulation</topic><topic>ocean color</topic><topic>Optical activity</topic><topic>Optical properties</topic><topic>optically active constituents</topic><topic>PAR</topic><topic>Phytoplankton</topic><topic>Properties</topic><topic>Radiance</topic><topic>Regression analysis</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Scattering</topic><topic>Spectrophotometry</topic><topic>Suspended inorganic matter</topic><topic>Suspended matter</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Turbidity</topic><topic>Underwater</topic><topic>underwater light field</topic><topic>Upstream</topic><topic>Upwelling</topic><topic>Variability</topic><topic>Water analysis</topic><topic>Water chemistry</topic><topic>Water quality</topic><topic>Water sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mascarenhas, V. J.</creatorcontrib><creatorcontrib>Voß, D.</creatorcontrib><creatorcontrib>Wollschlaeger, J.</creatorcontrib><creatorcontrib>Zielinski, O.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of geophysical research. Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mascarenhas, V. J.</au><au>Voß, D.</au><au>Wollschlaeger, J.</au><au>Zielinski, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fjord light regime: Bio‐optical variability, absorption budget, and hyperspectral light availability in Sognefjord and Trondheimsfjord, Norway</atitle><jtitle>Journal of geophysical research. Oceans</jtitle><date>2017-05</date><risdate>2017</risdate><volume>122</volume><issue>5</issue><spage>3828</spage><epage>3847</epage><pages>3828-3847</pages><issn>2169-9275</issn><eissn>2169-9291</eissn><abstract>Optically active constituents (OACs) in addition to water molecules attenuate light via processes of absorption and scattering and thereby determine underwater light availability. An analysis of their optical properties helps in determining the contribution of each of these to light attenuation. With an aim to study the bio‐optical variability, absorption budget and 1% spectral light availability, hydrographical (temperature and salinity), and hyperspectral optical (downwelling irradiance and upwelling radiance) profiles were measured along fjord transects in Sognefjord and Trondheimsfjord, Norway. Optical water quality observations were also performed using Secchi disc and Forel‐Ule scale. In concurrence, water samples were collected and analyzed via visible spectrophotometry, fluorometry, and gravimetry to quantify and derive inherent optical properties of the water constituents. An absorption model (R2 = 0.91, n = 36, p < 0.05) as a function of OACs is developed for Sognefjord using multiple regression analysis. Influenced by glacial meltwater, Sognefjord had higher concentration of inorganic suspended matter, while Trondheimsfjord had higher concentrations of CDOM. Increase in turbidity caused increased attenuation of light upstream, as a result of which the euphotic depth decreased from outer to inner fjord sections. Triangular representation of absorption budget revealed dominant absorption by CDOM at 443–555 nm, while that by phytoplankton at 665 nm. Sognefjord however exhibited much greater optical complexity. A significantly strong correlation between salinity and acdom440 is used to develop an algorithm to estimate acdom440 using salinity in Trondheimsfjord.
Key Points
Euphotic depth decreases from outer to inner fjord sections
Light availability curves are V shaped in the turbid fjord sections and U shaped in others
Sognefjord and Trondheimsfjord exhibit bio‐optical variability</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2016JC012610</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-5387-9491</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9275 |
ispartof | Journal of geophysical research. Oceans, 2017-05, Vol.122 (5), p.3828-3847 |
issn | 2169-9275 2169-9291 |
language | eng |
recordid | cdi_proquest_journals_1914013846 |
source | Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Alma/SFX Local Collection |
subjects | Absorption Attenuation Availability Budgeting Budgets case 2 Complexity Correlation Depth Dissolved organic matter Downwelling Fjords Fluorometers Fluorometry Geophysics Glacier melting Gravimetric analysis Gravimetry Irradiance Light Light attenuation Mathematical models Meltwater Multiple regression analysis Ocean circulation ocean color Optical activity Optical properties optically active constituents PAR Phytoplankton Properties Radiance Regression analysis Salinity Salinity effects Scattering Spectrophotometry Suspended inorganic matter Suspended matter Temperature Temperature effects Turbidity Underwater underwater light field Upstream Upwelling Variability Water analysis Water chemistry Water quality Water sampling |
title | Fjord light regime: Bio‐optical variability, absorption budget, and hyperspectral light availability in Sognefjord and Trondheimsfjord, Norway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fjord%20light%20regime:%20Bio%E2%80%90optical%20variability,%20absorption%20budget,%20and%20hyperspectral%20light%20availability%20in%20Sognefjord%20and%20Trondheimsfjord,%20Norway&rft.jtitle=Journal%20of%20geophysical%20research.%20Oceans&rft.au=Mascarenhas,%20V.%20J.&rft.date=2017-05&rft.volume=122&rft.issue=5&rft.spage=3828&rft.epage=3847&rft.pages=3828-3847&rft.issn=2169-9275&rft.eissn=2169-9291&rft_id=info:doi/10.1002/2016JC012610&rft_dat=%3Cproquest_wiley%3E1914013846%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1914013846&rft_id=info:pmid/&rfr_iscdi=true |