Fjord light regime: Bio‐optical variability, absorption budget, and hyperspectral light availability in Sognefjord and Trondheimsfjord, Norway

Optically active constituents (OACs) in addition to water molecules attenuate light via processes of absorption and scattering and thereby determine underwater light availability. An analysis of their optical properties helps in determining the contribution of each of these to light attenuation. Wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Oceans 2017-05, Vol.122 (5), p.3828-3847
Hauptverfasser: Mascarenhas, V. J., Voß, D., Wollschlaeger, J., Zielinski, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3847
container_issue 5
container_start_page 3828
container_title Journal of geophysical research. Oceans
container_volume 122
creator Mascarenhas, V. J.
Voß, D.
Wollschlaeger, J.
Zielinski, O.
description Optically active constituents (OACs) in addition to water molecules attenuate light via processes of absorption and scattering and thereby determine underwater light availability. An analysis of their optical properties helps in determining the contribution of each of these to light attenuation. With an aim to study the bio‐optical variability, absorption budget and 1% spectral light availability, hydrographical (temperature and salinity), and hyperspectral optical (downwelling irradiance and upwelling radiance) profiles were measured along fjord transects in Sognefjord and Trondheimsfjord, Norway. Optical water quality observations were also performed using Secchi disc and Forel‐Ule scale. In concurrence, water samples were collected and analyzed via visible spectrophotometry, fluorometry, and gravimetry to quantify and derive inherent optical properties of the water constituents. An absorption model (R2 = 0.91, n = 36, p 
doi_str_mv 10.1002/2016JC012610
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1914013846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1914013846</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3319-cb1f5569b7f74199f065de228d60dca55b36c871f8c2204a95626084d1e4c3c23</originalsourceid><addsrcrecordid>eNpNUEtOwzAQtRBIVKU7DmCJbQMeJ3FidlDRQlWBBGUdObaTukrj4KStsuMIPSMnIf0IMZsZvXkf6SF0DeQWCKF3lACbjghQBuQM9Sgw7nHK4fzvjsJLNKjrJekmhjgIeA_txkvrFC5Mvmiw07lZ6Xv8aOzP985WjZGiwBvhjEhNYZp2iEVaW9c9bInTtcp100Glwou20q6utGxcpzi6iY0wxUmITYk_bF7q7BC3l8ydLdVCm1V9wIb41bqtaK_QRSaKWg9Ou48-x0_z0bM3e5u8jB5mnvB94J5MIQtDxtMoiwLgPCMsVJrSWDGipAjD1GcyjiCLJaUkEDxklJE4UKAD6Uvq99HN0bdy9mut6yZZ2rUru8gEOAQE_DhgHcs_sram0G1SObMSrk2AJPvOk_-dJ9PJ-4hSyrj_CzYFeFs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1914013846</pqid></control><display><type>article</type><title>Fjord light regime: Bio‐optical variability, absorption budget, and hyperspectral light availability in Sognefjord and Trondheimsfjord, Norway</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Alma/SFX Local Collection</source><creator>Mascarenhas, V. J. ; Voß, D. ; Wollschlaeger, J. ; Zielinski, O.</creator><creatorcontrib>Mascarenhas, V. J. ; Voß, D. ; Wollschlaeger, J. ; Zielinski, O.</creatorcontrib><description>Optically active constituents (OACs) in addition to water molecules attenuate light via processes of absorption and scattering and thereby determine underwater light availability. An analysis of their optical properties helps in determining the contribution of each of these to light attenuation. With an aim to study the bio‐optical variability, absorption budget and 1% spectral light availability, hydrographical (temperature and salinity), and hyperspectral optical (downwelling irradiance and upwelling radiance) profiles were measured along fjord transects in Sognefjord and Trondheimsfjord, Norway. Optical water quality observations were also performed using Secchi disc and Forel‐Ule scale. In concurrence, water samples were collected and analyzed via visible spectrophotometry, fluorometry, and gravimetry to quantify and derive inherent optical properties of the water constituents. An absorption model (R2 = 0.91, n = 36, p &lt; 0.05) as a function of OACs is developed for Sognefjord using multiple regression analysis. Influenced by glacial meltwater, Sognefjord had higher concentration of inorganic suspended matter, while Trondheimsfjord had higher concentrations of CDOM. Increase in turbidity caused increased attenuation of light upstream, as a result of which the euphotic depth decreased from outer to inner fjord sections. Triangular representation of absorption budget revealed dominant absorption by CDOM at 443–555 nm, while that by phytoplankton at 665 nm. Sognefjord however exhibited much greater optical complexity. A significantly strong correlation between salinity and acdom440 is used to develop an algorithm to estimate acdom440 using salinity in Trondheimsfjord. Key Points Euphotic depth decreases from outer to inner fjord sections Light availability curves are V shaped in the turbid fjord sections and U shaped in others Sognefjord and Trondheimsfjord exhibit bio‐optical variability</description><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1002/2016JC012610</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Absorption ; Attenuation ; Availability ; Budgeting ; Budgets ; case 2 ; Complexity ; Correlation ; Depth ; Dissolved organic matter ; Downwelling ; Fjords ; Fluorometers ; Fluorometry ; Geophysics ; Glacier melting ; Gravimetric analysis ; Gravimetry ; Irradiance ; Light ; Light attenuation ; Mathematical models ; Meltwater ; Multiple regression analysis ; Ocean circulation ; ocean color ; Optical activity ; Optical properties ; optically active constituents ; PAR ; Phytoplankton ; Properties ; Radiance ; Regression analysis ; Salinity ; Salinity effects ; Scattering ; Spectrophotometry ; Suspended inorganic matter ; Suspended matter ; Temperature ; Temperature effects ; Turbidity ; Underwater ; underwater light field ; Upstream ; Upwelling ; Variability ; Water analysis ; Water chemistry ; Water quality ; Water sampling</subject><ispartof>Journal of geophysical research. Oceans, 2017-05, Vol.122 (5), p.3828-3847</ispartof><rights>2017. The Authors.</rights><rights>2017. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3319-cb1f5569b7f74199f065de228d60dca55b36c871f8c2204a95626084d1e4c3c23</citedby><orcidid>0000-0001-5387-9491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016JC012610$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016JC012610$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Mascarenhas, V. J.</creatorcontrib><creatorcontrib>Voß, D.</creatorcontrib><creatorcontrib>Wollschlaeger, J.</creatorcontrib><creatorcontrib>Zielinski, O.</creatorcontrib><title>Fjord light regime: Bio‐optical variability, absorption budget, and hyperspectral light availability in Sognefjord and Trondheimsfjord, Norway</title><title>Journal of geophysical research. Oceans</title><description>Optically active constituents (OACs) in addition to water molecules attenuate light via processes of absorption and scattering and thereby determine underwater light availability. An analysis of their optical properties helps in determining the contribution of each of these to light attenuation. With an aim to study the bio‐optical variability, absorption budget and 1% spectral light availability, hydrographical (temperature and salinity), and hyperspectral optical (downwelling irradiance and upwelling radiance) profiles were measured along fjord transects in Sognefjord and Trondheimsfjord, Norway. Optical water quality observations were also performed using Secchi disc and Forel‐Ule scale. In concurrence, water samples were collected and analyzed via visible spectrophotometry, fluorometry, and gravimetry to quantify and derive inherent optical properties of the water constituents. An absorption model (R2 = 0.91, n = 36, p &lt; 0.05) as a function of OACs is developed for Sognefjord using multiple regression analysis. Influenced by glacial meltwater, Sognefjord had higher concentration of inorganic suspended matter, while Trondheimsfjord had higher concentrations of CDOM. Increase in turbidity caused increased attenuation of light upstream, as a result of which the euphotic depth decreased from outer to inner fjord sections. Triangular representation of absorption budget revealed dominant absorption by CDOM at 443–555 nm, while that by phytoplankton at 665 nm. Sognefjord however exhibited much greater optical complexity. A significantly strong correlation between salinity and acdom440 is used to develop an algorithm to estimate acdom440 using salinity in Trondheimsfjord. Key Points Euphotic depth decreases from outer to inner fjord sections Light availability curves are V shaped in the turbid fjord sections and U shaped in others Sognefjord and Trondheimsfjord exhibit bio‐optical variability</description><subject>Absorption</subject><subject>Attenuation</subject><subject>Availability</subject><subject>Budgeting</subject><subject>Budgets</subject><subject>case 2</subject><subject>Complexity</subject><subject>Correlation</subject><subject>Depth</subject><subject>Dissolved organic matter</subject><subject>Downwelling</subject><subject>Fjords</subject><subject>Fluorometers</subject><subject>Fluorometry</subject><subject>Geophysics</subject><subject>Glacier melting</subject><subject>Gravimetric analysis</subject><subject>Gravimetry</subject><subject>Irradiance</subject><subject>Light</subject><subject>Light attenuation</subject><subject>Mathematical models</subject><subject>Meltwater</subject><subject>Multiple regression analysis</subject><subject>Ocean circulation</subject><subject>ocean color</subject><subject>Optical activity</subject><subject>Optical properties</subject><subject>optically active constituents</subject><subject>PAR</subject><subject>Phytoplankton</subject><subject>Properties</subject><subject>Radiance</subject><subject>Regression analysis</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Scattering</subject><subject>Spectrophotometry</subject><subject>Suspended inorganic matter</subject><subject>Suspended matter</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Turbidity</subject><subject>Underwater</subject><subject>underwater light field</subject><subject>Upstream</subject><subject>Upwelling</subject><subject>Variability</subject><subject>Water analysis</subject><subject>Water chemistry</subject><subject>Water quality</subject><subject>Water sampling</subject><issn>2169-9275</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNpNUEtOwzAQtRBIVKU7DmCJbQMeJ3FidlDRQlWBBGUdObaTukrj4KStsuMIPSMnIf0IMZsZvXkf6SF0DeQWCKF3lACbjghQBuQM9Sgw7nHK4fzvjsJLNKjrJekmhjgIeA_txkvrFC5Mvmiw07lZ6Xv8aOzP985WjZGiwBvhjEhNYZp2iEVaW9c9bInTtcp100Glwou20q6utGxcpzi6iY0wxUmITYk_bF7q7BC3l8ydLdVCm1V9wIb41bqtaK_QRSaKWg9Ou48-x0_z0bM3e5u8jB5mnvB94J5MIQtDxtMoiwLgPCMsVJrSWDGipAjD1GcyjiCLJaUkEDxklJE4UKAD6Uvq99HN0bdy9mut6yZZ2rUru8gEOAQE_DhgHcs_sram0G1SObMSrk2AJPvOk_-dJ9PJ-4hSyrj_CzYFeFs</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Mascarenhas, V. J.</creator><creator>Voß, D.</creator><creator>Wollschlaeger, J.</creator><creator>Zielinski, O.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-5387-9491</orcidid></search><sort><creationdate>201705</creationdate><title>Fjord light regime: Bio‐optical variability, absorption budget, and hyperspectral light availability in Sognefjord and Trondheimsfjord, Norway</title><author>Mascarenhas, V. J. ; Voß, D. ; Wollschlaeger, J. ; Zielinski, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3319-cb1f5569b7f74199f065de228d60dca55b36c871f8c2204a95626084d1e4c3c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Absorption</topic><topic>Attenuation</topic><topic>Availability</topic><topic>Budgeting</topic><topic>Budgets</topic><topic>case 2</topic><topic>Complexity</topic><topic>Correlation</topic><topic>Depth</topic><topic>Dissolved organic matter</topic><topic>Downwelling</topic><topic>Fjords</topic><topic>Fluorometers</topic><topic>Fluorometry</topic><topic>Geophysics</topic><topic>Glacier melting</topic><topic>Gravimetric analysis</topic><topic>Gravimetry</topic><topic>Irradiance</topic><topic>Light</topic><topic>Light attenuation</topic><topic>Mathematical models</topic><topic>Meltwater</topic><topic>Multiple regression analysis</topic><topic>Ocean circulation</topic><topic>ocean color</topic><topic>Optical activity</topic><topic>Optical properties</topic><topic>optically active constituents</topic><topic>PAR</topic><topic>Phytoplankton</topic><topic>Properties</topic><topic>Radiance</topic><topic>Regression analysis</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Scattering</topic><topic>Spectrophotometry</topic><topic>Suspended inorganic matter</topic><topic>Suspended matter</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Turbidity</topic><topic>Underwater</topic><topic>underwater light field</topic><topic>Upstream</topic><topic>Upwelling</topic><topic>Variability</topic><topic>Water analysis</topic><topic>Water chemistry</topic><topic>Water quality</topic><topic>Water sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mascarenhas, V. J.</creatorcontrib><creatorcontrib>Voß, D.</creatorcontrib><creatorcontrib>Wollschlaeger, J.</creatorcontrib><creatorcontrib>Zielinski, O.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of geophysical research. Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mascarenhas, V. J.</au><au>Voß, D.</au><au>Wollschlaeger, J.</au><au>Zielinski, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fjord light regime: Bio‐optical variability, absorption budget, and hyperspectral light availability in Sognefjord and Trondheimsfjord, Norway</atitle><jtitle>Journal of geophysical research. Oceans</jtitle><date>2017-05</date><risdate>2017</risdate><volume>122</volume><issue>5</issue><spage>3828</spage><epage>3847</epage><pages>3828-3847</pages><issn>2169-9275</issn><eissn>2169-9291</eissn><abstract>Optically active constituents (OACs) in addition to water molecules attenuate light via processes of absorption and scattering and thereby determine underwater light availability. An analysis of their optical properties helps in determining the contribution of each of these to light attenuation. With an aim to study the bio‐optical variability, absorption budget and 1% spectral light availability, hydrographical (temperature and salinity), and hyperspectral optical (downwelling irradiance and upwelling radiance) profiles were measured along fjord transects in Sognefjord and Trondheimsfjord, Norway. Optical water quality observations were also performed using Secchi disc and Forel‐Ule scale. In concurrence, water samples were collected and analyzed via visible spectrophotometry, fluorometry, and gravimetry to quantify and derive inherent optical properties of the water constituents. An absorption model (R2 = 0.91, n = 36, p &lt; 0.05) as a function of OACs is developed for Sognefjord using multiple regression analysis. Influenced by glacial meltwater, Sognefjord had higher concentration of inorganic suspended matter, while Trondheimsfjord had higher concentrations of CDOM. Increase in turbidity caused increased attenuation of light upstream, as a result of which the euphotic depth decreased from outer to inner fjord sections. Triangular representation of absorption budget revealed dominant absorption by CDOM at 443–555 nm, while that by phytoplankton at 665 nm. Sognefjord however exhibited much greater optical complexity. A significantly strong correlation between salinity and acdom440 is used to develop an algorithm to estimate acdom440 using salinity in Trondheimsfjord. Key Points Euphotic depth decreases from outer to inner fjord sections Light availability curves are V shaped in the turbid fjord sections and U shaped in others Sognefjord and Trondheimsfjord exhibit bio‐optical variability</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2016JC012610</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-5387-9491</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9275
ispartof Journal of geophysical research. Oceans, 2017-05, Vol.122 (5), p.3828-3847
issn 2169-9275
2169-9291
language eng
recordid cdi_proquest_journals_1914013846
source Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Alma/SFX Local Collection
subjects Absorption
Attenuation
Availability
Budgeting
Budgets
case 2
Complexity
Correlation
Depth
Dissolved organic matter
Downwelling
Fjords
Fluorometers
Fluorometry
Geophysics
Glacier melting
Gravimetric analysis
Gravimetry
Irradiance
Light
Light attenuation
Mathematical models
Meltwater
Multiple regression analysis
Ocean circulation
ocean color
Optical activity
Optical properties
optically active constituents
PAR
Phytoplankton
Properties
Radiance
Regression analysis
Salinity
Salinity effects
Scattering
Spectrophotometry
Suspended inorganic matter
Suspended matter
Temperature
Temperature effects
Turbidity
Underwater
underwater light field
Upstream
Upwelling
Variability
Water analysis
Water chemistry
Water quality
Water sampling
title Fjord light regime: Bio‐optical variability, absorption budget, and hyperspectral light availability in Sognefjord and Trondheimsfjord, Norway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fjord%20light%20regime:%20Bio%E2%80%90optical%20variability,%20absorption%20budget,%20and%20hyperspectral%20light%20availability%20in%20Sognefjord%20and%20Trondheimsfjord,%20Norway&rft.jtitle=Journal%20of%20geophysical%20research.%20Oceans&rft.au=Mascarenhas,%20V.%20J.&rft.date=2017-05&rft.volume=122&rft.issue=5&rft.spage=3828&rft.epage=3847&rft.pages=3828-3847&rft.issn=2169-9275&rft.eissn=2169-9291&rft_id=info:doi/10.1002/2016JC012610&rft_dat=%3Cproquest_wiley%3E1914013846%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1914013846&rft_id=info:pmid/&rfr_iscdi=true