A Quick Negative Selection Algorithm for One-Class Classification in Big Data Era

Negative selection algorithm (NSA) is an important kind of the one-class classification model, but it is limited in the big data era due to its low efficiency. In this paper, we propose a new NSA based on Voronoi diagrams: VorNSA. The scheme of the detector generation process is changed from the tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2017-01, Vol.2017 (2017), p.1-7
Hauptverfasser: Yang, Tao, Li, Tao, Yang, Hanli, Chen, Wen, Zhu, Fangdong, Zhang, Fan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 2017
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2017
creator Yang, Tao
Li, Tao
Yang, Hanli
Chen, Wen
Zhu, Fangdong
Zhang, Fan
description Negative selection algorithm (NSA) is an important kind of the one-class classification model, but it is limited in the big data era due to its low efficiency. In this paper, we propose a new NSA based on Voronoi diagrams: VorNSA. The scheme of the detector generation process is changed from the traditional “Random-Discard” model to the “Computing-Designated” model by VorNSA. Furthermore, we present an immune detection process of VorNSA under Map/Reduce framework (VorNSA/MR) to further reduce the time consumption on massive data in the testing stage. Theoretical analyses show that the time complexity of VorNSA decreases from the exponential level to the logarithmic level. Experiments are performed to compare the proposed technique with other NSAs and one-class classifiers. The results show that the time cost of the VorNSA is averagely decreased by 87.5% compared with traditional NSAs in UCI skin dataset.
doi_str_mv 10.1155/2017/3956415
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1913636785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4323017195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-4f760402634f4fac7496fd2fcf46fcb1cc2803dad469c54c6caf1e4806a393033</originalsourceid><addsrcrecordid>eNqF0E1LAzEQBuAgCtbqzbMEPOraTL5291hr_QCxFBW8hZhN2tTtbk22iv_ebbfg0cvMHB7egRehUyBXAEIMKIF0wHIhOYg91AMhWSKAp_vtTShPgLK3Q3QU44IQCgKyHpoO8XTtzQd-sjPd-C-Ln21pTePrCg_LWR18M19iVwc8qWwyKnWMeDu980Zvma_wtZ_hG91oPA76GB04XUZ7stt99Ho7fhndJ4-Tu4fR8DExTJIm4S6VhBMqGXfcaZPyXLqCOuO4dOYdjKEZYYUuuMyN4EYa7cDyjEjNckYY66PzLncV6s-1jY1a1OtQtS8V5MAkk2kmWnXZKRPqGIN1ahX8UocfBURtSlOb0tSutJZfdHzuq0J_-__0Wadta6zTfxpywghlv0yUdBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1913636785</pqid></control><display><type>article</type><title>A Quick Negative Selection Algorithm for One-Class Classification in Big Data Era</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Yang, Tao ; Li, Tao ; Yang, Hanli ; Chen, Wen ; Zhu, Fangdong ; Zhang, Fan</creator><contributor>Zhang, Zonghua</contributor><creatorcontrib>Yang, Tao ; Li, Tao ; Yang, Hanli ; Chen, Wen ; Zhu, Fangdong ; Zhang, Fan ; Zhang, Zonghua</creatorcontrib><description>Negative selection algorithm (NSA) is an important kind of the one-class classification model, but it is limited in the big data era due to its low efficiency. In this paper, we propose a new NSA based on Voronoi diagrams: VorNSA. The scheme of the detector generation process is changed from the traditional “Random-Discard” model to the “Computing-Designated” model by VorNSA. Furthermore, we present an immune detection process of VorNSA under Map/Reduce framework (VorNSA/MR) to further reduce the time consumption on massive data in the testing stage. Theoretical analyses show that the time complexity of VorNSA decreases from the exponential level to the logarithmic level. Experiments are performed to compare the proposed technique with other NSAs and one-class classifiers. The results show that the time cost of the VorNSA is averagely decreased by 87.5% compared with traditional NSAs in UCI skin dataset.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2017/3956415</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Antigens ; Big Data ; Classification ; Colleges &amp; universities ; Cost analysis ; Efficiency ; Mathematical problems ; Sensors ; Voronoi graphs</subject><ispartof>Mathematical problems in engineering, 2017-01, Vol.2017 (2017), p.1-7</ispartof><rights>Copyright © 2017 Fangdong Zhu et al.</rights><rights>Copyright © 2017 Fangdong Zhu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-4f760402634f4fac7496fd2fcf46fcb1cc2803dad469c54c6caf1e4806a393033</citedby><cites>FETCH-LOGICAL-c360t-4f760402634f4fac7496fd2fcf46fcb1cc2803dad469c54c6caf1e4806a393033</cites><orcidid>0000-0002-1525-9096 ; 0000-0002-5930-360X ; 0000-0003-0566-2495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Zhang, Zonghua</contributor><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Yang, Hanli</creatorcontrib><creatorcontrib>Chen, Wen</creatorcontrib><creatorcontrib>Zhu, Fangdong</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><title>A Quick Negative Selection Algorithm for One-Class Classification in Big Data Era</title><title>Mathematical problems in engineering</title><description>Negative selection algorithm (NSA) is an important kind of the one-class classification model, but it is limited in the big data era due to its low efficiency. In this paper, we propose a new NSA based on Voronoi diagrams: VorNSA. The scheme of the detector generation process is changed from the traditional “Random-Discard” model to the “Computing-Designated” model by VorNSA. Furthermore, we present an immune detection process of VorNSA under Map/Reduce framework (VorNSA/MR) to further reduce the time consumption on massive data in the testing stage. Theoretical analyses show that the time complexity of VorNSA decreases from the exponential level to the logarithmic level. Experiments are performed to compare the proposed technique with other NSAs and one-class classifiers. The results show that the time cost of the VorNSA is averagely decreased by 87.5% compared with traditional NSAs in UCI skin dataset.</description><subject>Algorithms</subject><subject>Antigens</subject><subject>Big Data</subject><subject>Classification</subject><subject>Colleges &amp; universities</subject><subject>Cost analysis</subject><subject>Efficiency</subject><subject>Mathematical problems</subject><subject>Sensors</subject><subject>Voronoi graphs</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0E1LAzEQBuAgCtbqzbMEPOraTL5291hr_QCxFBW8hZhN2tTtbk22iv_ebbfg0cvMHB7egRehUyBXAEIMKIF0wHIhOYg91AMhWSKAp_vtTShPgLK3Q3QU44IQCgKyHpoO8XTtzQd-sjPd-C-Ln21pTePrCg_LWR18M19iVwc8qWwyKnWMeDu980Zvma_wtZ_hG91oPA76GB04XUZ7stt99Ho7fhndJ4-Tu4fR8DExTJIm4S6VhBMqGXfcaZPyXLqCOuO4dOYdjKEZYYUuuMyN4EYa7cDyjEjNckYY66PzLncV6s-1jY1a1OtQtS8V5MAkk2kmWnXZKRPqGIN1ahX8UocfBURtSlOb0tSutJZfdHzuq0J_-__0Wadta6zTfxpywghlv0yUdBA</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Yang, Tao</creator><creator>Li, Tao</creator><creator>Yang, Hanli</creator><creator>Chen, Wen</creator><creator>Zhu, Fangdong</creator><creator>Zhang, Fan</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-1525-9096</orcidid><orcidid>https://orcid.org/0000-0002-5930-360X</orcidid><orcidid>https://orcid.org/0000-0003-0566-2495</orcidid></search><sort><creationdate>20170101</creationdate><title>A Quick Negative Selection Algorithm for One-Class Classification in Big Data Era</title><author>Yang, Tao ; Li, Tao ; Yang, Hanli ; Chen, Wen ; Zhu, Fangdong ; Zhang, Fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-4f760402634f4fac7496fd2fcf46fcb1cc2803dad469c54c6caf1e4806a393033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Antigens</topic><topic>Big Data</topic><topic>Classification</topic><topic>Colleges &amp; universities</topic><topic>Cost analysis</topic><topic>Efficiency</topic><topic>Mathematical problems</topic><topic>Sensors</topic><topic>Voronoi graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Yang, Hanli</creatorcontrib><creatorcontrib>Chen, Wen</creatorcontrib><creatorcontrib>Zhu, Fangdong</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Tao</au><au>Li, Tao</au><au>Yang, Hanli</au><au>Chen, Wen</au><au>Zhu, Fangdong</au><au>Zhang, Fan</au><au>Zhang, Zonghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Quick Negative Selection Algorithm for One-Class Classification in Big Data Era</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Negative selection algorithm (NSA) is an important kind of the one-class classification model, but it is limited in the big data era due to its low efficiency. In this paper, we propose a new NSA based on Voronoi diagrams: VorNSA. The scheme of the detector generation process is changed from the traditional “Random-Discard” model to the “Computing-Designated” model by VorNSA. Furthermore, we present an immune detection process of VorNSA under Map/Reduce framework (VorNSA/MR) to further reduce the time consumption on massive data in the testing stage. Theoretical analyses show that the time complexity of VorNSA decreases from the exponential level to the logarithmic level. Experiments are performed to compare the proposed technique with other NSAs and one-class classifiers. The results show that the time cost of the VorNSA is averagely decreased by 87.5% compared with traditional NSAs in UCI skin dataset.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2017/3956415</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1525-9096</orcidid><orcidid>https://orcid.org/0000-0002-5930-360X</orcidid><orcidid>https://orcid.org/0000-0003-0566-2495</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2017-01, Vol.2017 (2017), p.1-7
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_1913636785
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Antigens
Big Data
Classification
Colleges & universities
Cost analysis
Efficiency
Mathematical problems
Sensors
Voronoi graphs
title A Quick Negative Selection Algorithm for One-Class Classification in Big Data Era
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Quick%20Negative%20Selection%20Algorithm%20for%20One-Class%20Classification%20in%20Big%20Data%20Era&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Yang,%20Tao&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2017/3956415&rft_dat=%3Cproquest_cross%3E4323017195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1913636785&rft_id=info:pmid/&rfr_iscdi=true