Polar Scale-Invariant Feature Transform for Synthetic Aperture Radar Image Registration

Obtaining high accuracy in orientation assignment for Synthetic Aperture Radar (SAR) image registration is a great challenge because of the serious speckle noise and geometrical distortion. In this letter, a polar scale-invariant feature transform (PSIFT) descriptor is proposed for SAR image registr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2017-07, Vol.14 (7), p.1101-1105
Hauptverfasser: Zeng, Lina, Zhou, Deyun, Liang, Junli, Zhang, Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1105
container_issue 7
container_start_page 1101
container_title IEEE geoscience and remote sensing letters
container_volume 14
creator Zeng, Lina
Zhou, Deyun
Liang, Junli
Zhang, Kun
description Obtaining high accuracy in orientation assignment for Synthetic Aperture Radar (SAR) image registration is a great challenge because of the serious speckle noise and geometrical distortion. In this letter, a polar scale-invariant feature transform (PSIFT) descriptor is proposed for SAR image registration. The novel descriptor is invariant to rotation, skipping the dominant orientation assignment. In PSIFT, a polar-transformed support region is adopted to calculate the gradient magnitudes and orientations and further sampled in the radial and angular directions with different scales. The final descriptor is then built with the orientation bins covering the omnidirectional space. Furthermore, an improved dual-matching method is proposed to achieve sufficiently correct matches. Extensive experiments confirm that the PSIFT descriptor is suitable for SAR image registration because of its excellent performance.
doi_str_mv 10.1109/LGRS.2017.2698450
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1913549923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7927702</ieee_id><sourcerecordid>1913549923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-4b9f43fafa5562b8421dbdfe3988285e130ec68f5a7240d89678c8171f2a14893</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWKsPIF4WPG_NZJNNcizF1kJBaSt6C9PdpG5pd2uSCn17d23xMvMfvn8GPkLugQ4AqH6aTeaLAaMgByzXigt6QXoghEqpkHDZZS5SodXnNbkJYUMp40rJHvl4a7bok0WBW5tO6x_0FdYxGVuMB2-Tpcc6uMbvknYki2Mdv2ysimS4t_4PmGPZ1qc7XLfZrqsQPcaqqW_JlcNtsHfn3Sfv4-fl6CWdvU6mo-EsLZjOYspX2vHMoUMhcrZSnEG5Kp3NtFJMCQsZtUWunEDJOC2VzqUqFEhwDIErnfXJ4-nu3jffBxui2TQHX7cvDWjIBNeaZS0FJ6rwTQjeOrP31Q790QA1nT_T-TOdP3P213YeTp3KWvvPS82kpCz7BcaBa_U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1913549923</pqid></control><display><type>article</type><title>Polar Scale-Invariant Feature Transform for Synthetic Aperture Radar Image Registration</title><source>IEEE Electronic Library (IEL)</source><creator>Zeng, Lina ; Zhou, Deyun ; Liang, Junli ; Zhang, Kun</creator><creatorcontrib>Zeng, Lina ; Zhou, Deyun ; Liang, Junli ; Zhang, Kun</creatorcontrib><description>Obtaining high accuracy in orientation assignment for Synthetic Aperture Radar (SAR) image registration is a great challenge because of the serious speckle noise and geometrical distortion. In this letter, a polar scale-invariant feature transform (PSIFT) descriptor is proposed for SAR image registration. The novel descriptor is invariant to rotation, skipping the dominant orientation assignment. In PSIFT, a polar-transformed support region is adopted to calculate the gradient magnitudes and orientations and further sampled in the radial and angular directions with different scales. The final descriptor is then built with the orientation bins covering the omnidirectional space. Furthermore, an improved dual-matching method is proposed to achieve sufficiently correct matches. Extensive experiments confirm that the PSIFT descriptor is suitable for SAR image registration because of its excellent performance.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2017.2698450</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive optics ; Bins ; Distortion ; Feature descriptor ; Feature extraction ; Image registration ; Matching ; Methods ; Noise ; Noise prediction ; Orientation ; polar transform ; Radar ; Radar imaging ; Registration ; Robustness ; Rotation ; SAR (radar) ; scale-invariant feature transform (SIFT) ; Speckle ; Synthetic aperture radar ; synthetic aperture radar (SAR) image registration ; Transforms</subject><ispartof>IEEE geoscience and remote sensing letters, 2017-07, Vol.14 (7), p.1101-1105</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-4b9f43fafa5562b8421dbdfe3988285e130ec68f5a7240d89678c8171f2a14893</citedby><cites>FETCH-LOGICAL-c293t-4b9f43fafa5562b8421dbdfe3988285e130ec68f5a7240d89678c8171f2a14893</cites><orcidid>0000-0002-9647-1557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7927702$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7927702$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zeng, Lina</creatorcontrib><creatorcontrib>Zhou, Deyun</creatorcontrib><creatorcontrib>Liang, Junli</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><title>Polar Scale-Invariant Feature Transform for Synthetic Aperture Radar Image Registration</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Obtaining high accuracy in orientation assignment for Synthetic Aperture Radar (SAR) image registration is a great challenge because of the serious speckle noise and geometrical distortion. In this letter, a polar scale-invariant feature transform (PSIFT) descriptor is proposed for SAR image registration. The novel descriptor is invariant to rotation, skipping the dominant orientation assignment. In PSIFT, a polar-transformed support region is adopted to calculate the gradient magnitudes and orientations and further sampled in the radial and angular directions with different scales. The final descriptor is then built with the orientation bins covering the omnidirectional space. Furthermore, an improved dual-matching method is proposed to achieve sufficiently correct matches. Extensive experiments confirm that the PSIFT descriptor is suitable for SAR image registration because of its excellent performance.</description><subject>Adaptive optics</subject><subject>Bins</subject><subject>Distortion</subject><subject>Feature descriptor</subject><subject>Feature extraction</subject><subject>Image registration</subject><subject>Matching</subject><subject>Methods</subject><subject>Noise</subject><subject>Noise prediction</subject><subject>Orientation</subject><subject>polar transform</subject><subject>Radar</subject><subject>Radar imaging</subject><subject>Registration</subject><subject>Robustness</subject><subject>Rotation</subject><subject>SAR (radar)</subject><subject>scale-invariant feature transform (SIFT)</subject><subject>Speckle</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR) image registration</subject><subject>Transforms</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEQhoMoWKsPIF4WPG_NZJNNcizF1kJBaSt6C9PdpG5pd2uSCn17d23xMvMfvn8GPkLugQ4AqH6aTeaLAaMgByzXigt6QXoghEqpkHDZZS5SodXnNbkJYUMp40rJHvl4a7bok0WBW5tO6x_0FdYxGVuMB2-Tpcc6uMbvknYki2Mdv2ysimS4t_4PmGPZ1qc7XLfZrqsQPcaqqW_JlcNtsHfn3Sfv4-fl6CWdvU6mo-EsLZjOYspX2vHMoUMhcrZSnEG5Kp3NtFJMCQsZtUWunEDJOC2VzqUqFEhwDIErnfXJ4-nu3jffBxui2TQHX7cvDWjIBNeaZS0FJ6rwTQjeOrP31Q790QA1nT_T-TOdP3P213YeTp3KWvvPS82kpCz7BcaBa_U</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Zeng, Lina</creator><creator>Zhou, Deyun</creator><creator>Liang, Junli</creator><creator>Zhang, Kun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9647-1557</orcidid></search><sort><creationdate>20170701</creationdate><title>Polar Scale-Invariant Feature Transform for Synthetic Aperture Radar Image Registration</title><author>Zeng, Lina ; Zhou, Deyun ; Liang, Junli ; Zhang, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-4b9f43fafa5562b8421dbdfe3988285e130ec68f5a7240d89678c8171f2a14893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive optics</topic><topic>Bins</topic><topic>Distortion</topic><topic>Feature descriptor</topic><topic>Feature extraction</topic><topic>Image registration</topic><topic>Matching</topic><topic>Methods</topic><topic>Noise</topic><topic>Noise prediction</topic><topic>Orientation</topic><topic>polar transform</topic><topic>Radar</topic><topic>Radar imaging</topic><topic>Registration</topic><topic>Robustness</topic><topic>Rotation</topic><topic>SAR (radar)</topic><topic>scale-invariant feature transform (SIFT)</topic><topic>Speckle</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR) image registration</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Lina</creatorcontrib><creatorcontrib>Zhou, Deyun</creatorcontrib><creatorcontrib>Liang, Junli</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zeng, Lina</au><au>Zhou, Deyun</au><au>Liang, Junli</au><au>Zhang, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polar Scale-Invariant Feature Transform for Synthetic Aperture Radar Image Registration</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>14</volume><issue>7</issue><spage>1101</spage><epage>1105</epage><pages>1101-1105</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Obtaining high accuracy in orientation assignment for Synthetic Aperture Radar (SAR) image registration is a great challenge because of the serious speckle noise and geometrical distortion. In this letter, a polar scale-invariant feature transform (PSIFT) descriptor is proposed for SAR image registration. The novel descriptor is invariant to rotation, skipping the dominant orientation assignment. In PSIFT, a polar-transformed support region is adopted to calculate the gradient magnitudes and orientations and further sampled in the radial and angular directions with different scales. The final descriptor is then built with the orientation bins covering the omnidirectional space. Furthermore, an improved dual-matching method is proposed to achieve sufficiently correct matches. Extensive experiments confirm that the PSIFT descriptor is suitable for SAR image registration because of its excellent performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2017.2698450</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9647-1557</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2017-07, Vol.14 (7), p.1101-1105
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_1913549923
source IEEE Electronic Library (IEL)
subjects Adaptive optics
Bins
Distortion
Feature descriptor
Feature extraction
Image registration
Matching
Methods
Noise
Noise prediction
Orientation
polar transform
Radar
Radar imaging
Registration
Robustness
Rotation
SAR (radar)
scale-invariant feature transform (SIFT)
Speckle
Synthetic aperture radar
synthetic aperture radar (SAR) image registration
Transforms
title Polar Scale-Invariant Feature Transform for Synthetic Aperture Radar Image Registration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A31%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polar%20Scale-Invariant%20Feature%20Transform%20for%20Synthetic%20Aperture%20Radar%20Image%20Registration&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Zeng,%20Lina&rft.date=2017-07-01&rft.volume=14&rft.issue=7&rft.spage=1101&rft.epage=1105&rft.pages=1101-1105&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2017.2698450&rft_dat=%3Cproquest_RIE%3E1913549923%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1913549923&rft_id=info:pmid/&rft_ieee_id=7927702&rfr_iscdi=true