Denoising of Hyperspectral Image Using Low-Rank Matrix Factorization

Restoration of hyperspectral images (HSIs) is a challenging task, owing to the reason that images are inevitably contaminated by a mixture of noise, including Gaussian noise, impulse noise, dead lines, and stripes, during their acquisition process. Recently, HSI denoising approaches based on low-ran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2017-07, Vol.14 (7), p.1141-1145
Hauptverfasser: Xu, Fei, Chen, Yongyong, Peng, Chong, Wang, Yongli, Liu, Xuefeng, He, Guoping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1145
container_issue 7
container_start_page 1141
container_title IEEE geoscience and remote sensing letters
container_volume 14
creator Xu, Fei
Chen, Yongyong
Peng, Chong
Wang, Yongli
Liu, Xuefeng
He, Guoping
description Restoration of hyperspectral images (HSIs) is a challenging task, owing to the reason that images are inevitably contaminated by a mixture of noise, including Gaussian noise, impulse noise, dead lines, and stripes, during their acquisition process. Recently, HSI denoising approaches based on low-rank matrix approximation have become an active research field in remote sensing and have achieved state-of-the-art performance. These approaches, however, unavoidably require to calculate full or partial singular value decomposition of large matrices, leading to the relatively high computational cost and limiting their flexibility. To address this issue, this letter proposes a method exploiting a low-rank matrix factorization scheme, in which the associated robust principal component analysis is solved by the matrix factorization of the low-rank component. Our method needs only an upper bound of the rank of the underlying low-rank matrix rather than the precise value. The experimental results on the simulated and real data sets demonstrate the performance of our method by removing the mixed noise and recovering the severely contaminated images.
doi_str_mv 10.1109/LGRS.2017.2700406
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1913549805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7932170</ieee_id><sourcerecordid>1913549805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-dc02b4b6488fecc148fa3adb0383f537b135de78d9bb5429ee504f6c0708d9c3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHwp-Nx60yRL8iib-wMVYU7wLaRpOjq3piYdOj-9rRs-3cs959wDP4RuMSQYg3zIZsvXJAXMk5QDUBidoQFmTMTAOD7vd8piJsX7JboKYQOQUiH4AE0mtnZVqOp15MpofmisD401rdfbaLHTaxu9_YmZ-4qXuv6InnXrq-9oqk3rfPWj28rV1-ii1Ntgb05ziFbTp9V4Hmcvs8X4MYtNKkkbFwbSnOajrrm0xmAqSk10kQMRpGSE55iwwnJRyDxnNJXWMqDlyACH7mbIEN0f3zbefe5taNXG7X3dNSosuyyVAljnwkeX8S4Eb0vV-Gqn_UFhUD0r1bNSPSt1YtVl7o6Zylr77-eSpJgD-QVyEGVJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1913549805</pqid></control><display><type>article</type><title>Denoising of Hyperspectral Image Using Low-Rank Matrix Factorization</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Fei ; Chen, Yongyong ; Peng, Chong ; Wang, Yongli ; Liu, Xuefeng ; He, Guoping</creator><creatorcontrib>Xu, Fei ; Chen, Yongyong ; Peng, Chong ; Wang, Yongli ; Liu, Xuefeng ; He, Guoping</creatorcontrib><description>Restoration of hyperspectral images (HSIs) is a challenging task, owing to the reason that images are inevitably contaminated by a mixture of noise, including Gaussian noise, impulse noise, dead lines, and stripes, during their acquisition process. Recently, HSI denoising approaches based on low-rank matrix approximation have become an active research field in remote sensing and have achieved state-of-the-art performance. These approaches, however, unavoidably require to calculate full or partial singular value decomposition of large matrices, leading to the relatively high computational cost and limiting their flexibility. To address this issue, this letter proposes a method exploiting a low-rank matrix factorization scheme, in which the associated robust principal component analysis is solved by the matrix factorization of the low-rank component. Our method needs only an upper bound of the rank of the underlying low-rank matrix rather than the precise value. The experimental results on the simulated and real data sets demonstrate the performance of our method by removing the mixed noise and recovering the severely contaminated images.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2017.2700406</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Approximation ; Computer applications ; Computer simulation ; Constraining ; Contamination ; Data ; Denoising ; Factorization ; Flexibility ; Gaussian noise ; Gaussian process ; hyperspectral image (HSI) ; Hyperspectral imaging ; Image restoration ; Lines ; low-rank matrix factorization ; Matrices (mathematics) ; Matrix decomposition ; Methods ; Noise ; Noise prediction ; Noise reduction ; Principal components analysis ; Recovering ; Remote sensing ; Restoration ; Singular value decomposition ; Sparse matrices ; State of the art</subject><ispartof>IEEE geoscience and remote sensing letters, 2017-07, Vol.14 (7), p.1141-1145</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-dc02b4b6488fecc148fa3adb0383f537b135de78d9bb5429ee504f6c0708d9c3</citedby><cites>FETCH-LOGICAL-c293t-dc02b4b6488fecc148fa3adb0383f537b135de78d9bb5429ee504f6c0708d9c3</cites><orcidid>0000-0002-4004-7511 ; 0000-0001-8221-451X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7932170$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7932170$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Fei</creatorcontrib><creatorcontrib>Chen, Yongyong</creatorcontrib><creatorcontrib>Peng, Chong</creatorcontrib><creatorcontrib>Wang, Yongli</creatorcontrib><creatorcontrib>Liu, Xuefeng</creatorcontrib><creatorcontrib>He, Guoping</creatorcontrib><title>Denoising of Hyperspectral Image Using Low-Rank Matrix Factorization</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Restoration of hyperspectral images (HSIs) is a challenging task, owing to the reason that images are inevitably contaminated by a mixture of noise, including Gaussian noise, impulse noise, dead lines, and stripes, during their acquisition process. Recently, HSI denoising approaches based on low-rank matrix approximation have become an active research field in remote sensing and have achieved state-of-the-art performance. These approaches, however, unavoidably require to calculate full or partial singular value decomposition of large matrices, leading to the relatively high computational cost and limiting their flexibility. To address this issue, this letter proposes a method exploiting a low-rank matrix factorization scheme, in which the associated robust principal component analysis is solved by the matrix factorization of the low-rank component. Our method needs only an upper bound of the rank of the underlying low-rank matrix rather than the precise value. The experimental results on the simulated and real data sets demonstrate the performance of our method by removing the mixed noise and recovering the severely contaminated images.</description><subject>Approximation</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Constraining</subject><subject>Contamination</subject><subject>Data</subject><subject>Denoising</subject><subject>Factorization</subject><subject>Flexibility</subject><subject>Gaussian noise</subject><subject>Gaussian process</subject><subject>hyperspectral image (HSI)</subject><subject>Hyperspectral imaging</subject><subject>Image restoration</subject><subject>Lines</subject><subject>low-rank matrix factorization</subject><subject>Matrices (mathematics)</subject><subject>Matrix decomposition</subject><subject>Methods</subject><subject>Noise</subject><subject>Noise prediction</subject><subject>Noise reduction</subject><subject>Principal components analysis</subject><subject>Recovering</subject><subject>Remote sensing</subject><subject>Restoration</subject><subject>Singular value decomposition</subject><subject>Sparse matrices</subject><subject>State of the art</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKcfQHwp-Nx60yRL8iib-wMVYU7wLaRpOjq3piYdOj-9rRs-3cs959wDP4RuMSQYg3zIZsvXJAXMk5QDUBidoQFmTMTAOD7vd8piJsX7JboKYQOQUiH4AE0mtnZVqOp15MpofmisD401rdfbaLHTaxu9_YmZ-4qXuv6InnXrq-9oqk3rfPWj28rV1-ii1Ntgb05ziFbTp9V4Hmcvs8X4MYtNKkkbFwbSnOajrrm0xmAqSk10kQMRpGSE55iwwnJRyDxnNJXWMqDlyACH7mbIEN0f3zbefe5taNXG7X3dNSosuyyVAljnwkeX8S4Eb0vV-Gqn_UFhUD0r1bNSPSt1YtVl7o6Zylr77-eSpJgD-QVyEGVJ</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Xu, Fei</creator><creator>Chen, Yongyong</creator><creator>Peng, Chong</creator><creator>Wang, Yongli</creator><creator>Liu, Xuefeng</creator><creator>He, Guoping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4004-7511</orcidid><orcidid>https://orcid.org/0000-0001-8221-451X</orcidid></search><sort><creationdate>20170701</creationdate><title>Denoising of Hyperspectral Image Using Low-Rank Matrix Factorization</title><author>Xu, Fei ; Chen, Yongyong ; Peng, Chong ; Wang, Yongli ; Liu, Xuefeng ; He, Guoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-dc02b4b6488fecc148fa3adb0383f537b135de78d9bb5429ee504f6c0708d9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Constraining</topic><topic>Contamination</topic><topic>Data</topic><topic>Denoising</topic><topic>Factorization</topic><topic>Flexibility</topic><topic>Gaussian noise</topic><topic>Gaussian process</topic><topic>hyperspectral image (HSI)</topic><topic>Hyperspectral imaging</topic><topic>Image restoration</topic><topic>Lines</topic><topic>low-rank matrix factorization</topic><topic>Matrices (mathematics)</topic><topic>Matrix decomposition</topic><topic>Methods</topic><topic>Noise</topic><topic>Noise prediction</topic><topic>Noise reduction</topic><topic>Principal components analysis</topic><topic>Recovering</topic><topic>Remote sensing</topic><topic>Restoration</topic><topic>Singular value decomposition</topic><topic>Sparse matrices</topic><topic>State of the art</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Fei</creatorcontrib><creatorcontrib>Chen, Yongyong</creatorcontrib><creatorcontrib>Peng, Chong</creatorcontrib><creatorcontrib>Wang, Yongli</creatorcontrib><creatorcontrib>Liu, Xuefeng</creatorcontrib><creatorcontrib>He, Guoping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Fei</au><au>Chen, Yongyong</au><au>Peng, Chong</au><au>Wang, Yongli</au><au>Liu, Xuefeng</au><au>He, Guoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Denoising of Hyperspectral Image Using Low-Rank Matrix Factorization</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>14</volume><issue>7</issue><spage>1141</spage><epage>1145</epage><pages>1141-1145</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Restoration of hyperspectral images (HSIs) is a challenging task, owing to the reason that images are inevitably contaminated by a mixture of noise, including Gaussian noise, impulse noise, dead lines, and stripes, during their acquisition process. Recently, HSI denoising approaches based on low-rank matrix approximation have become an active research field in remote sensing and have achieved state-of-the-art performance. These approaches, however, unavoidably require to calculate full or partial singular value decomposition of large matrices, leading to the relatively high computational cost and limiting their flexibility. To address this issue, this letter proposes a method exploiting a low-rank matrix factorization scheme, in which the associated robust principal component analysis is solved by the matrix factorization of the low-rank component. Our method needs only an upper bound of the rank of the underlying low-rank matrix rather than the precise value. The experimental results on the simulated and real data sets demonstrate the performance of our method by removing the mixed noise and recovering the severely contaminated images.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2017.2700406</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4004-7511</orcidid><orcidid>https://orcid.org/0000-0001-8221-451X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2017-07, Vol.14 (7), p.1141-1145
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_1913549805
source IEEE Electronic Library (IEL)
subjects Approximation
Computer applications
Computer simulation
Constraining
Contamination
Data
Denoising
Factorization
Flexibility
Gaussian noise
Gaussian process
hyperspectral image (HSI)
Hyperspectral imaging
Image restoration
Lines
low-rank matrix factorization
Matrices (mathematics)
Matrix decomposition
Methods
Noise
Noise prediction
Noise reduction
Principal components analysis
Recovering
Remote sensing
Restoration
Singular value decomposition
Sparse matrices
State of the art
title Denoising of Hyperspectral Image Using Low-Rank Matrix Factorization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Denoising%20of%20Hyperspectral%20Image%20Using%20Low-Rank%20Matrix%20Factorization&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Xu,%20Fei&rft.date=2017-07-01&rft.volume=14&rft.issue=7&rft.spage=1141&rft.epage=1145&rft.pages=1141-1145&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2017.2700406&rft_dat=%3Cproquest_RIE%3E1913549805%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1913549805&rft_id=info:pmid/&rft_ieee_id=7932170&rfr_iscdi=true