Denoising of Hyperspectral Image Using Low-Rank Matrix Factorization
Restoration of hyperspectral images (HSIs) is a challenging task, owing to the reason that images are inevitably contaminated by a mixture of noise, including Gaussian noise, impulse noise, dead lines, and stripes, during their acquisition process. Recently, HSI denoising approaches based on low-ran...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2017-07, Vol.14 (7), p.1141-1145 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1145 |
---|---|
container_issue | 7 |
container_start_page | 1141 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 14 |
creator | Xu, Fei Chen, Yongyong Peng, Chong Wang, Yongli Liu, Xuefeng He, Guoping |
description | Restoration of hyperspectral images (HSIs) is a challenging task, owing to the reason that images are inevitably contaminated by a mixture of noise, including Gaussian noise, impulse noise, dead lines, and stripes, during their acquisition process. Recently, HSI denoising approaches based on low-rank matrix approximation have become an active research field in remote sensing and have achieved state-of-the-art performance. These approaches, however, unavoidably require to calculate full or partial singular value decomposition of large matrices, leading to the relatively high computational cost and limiting their flexibility. To address this issue, this letter proposes a method exploiting a low-rank matrix factorization scheme, in which the associated robust principal component analysis is solved by the matrix factorization of the low-rank component. Our method needs only an upper bound of the rank of the underlying low-rank matrix rather than the precise value. The experimental results on the simulated and real data sets demonstrate the performance of our method by removing the mixed noise and recovering the severely contaminated images. |
doi_str_mv | 10.1109/LGRS.2017.2700406 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1913549805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7932170</ieee_id><sourcerecordid>1913549805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-dc02b4b6488fecc148fa3adb0383f537b135de78d9bb5429ee504f6c0708d9c3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHwp-Nx60yRL8iib-wMVYU7wLaRpOjq3piYdOj-9rRs-3cs959wDP4RuMSQYg3zIZsvXJAXMk5QDUBidoQFmTMTAOD7vd8piJsX7JboKYQOQUiH4AE0mtnZVqOp15MpofmisD401rdfbaLHTaxu9_YmZ-4qXuv6InnXrq-9oqk3rfPWj28rV1-ii1Ntgb05ziFbTp9V4Hmcvs8X4MYtNKkkbFwbSnOajrrm0xmAqSk10kQMRpGSE55iwwnJRyDxnNJXWMqDlyACH7mbIEN0f3zbefe5taNXG7X3dNSosuyyVAljnwkeX8S4Eb0vV-Gqn_UFhUD0r1bNSPSt1YtVl7o6Zylr77-eSpJgD-QVyEGVJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1913549805</pqid></control><display><type>article</type><title>Denoising of Hyperspectral Image Using Low-Rank Matrix Factorization</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Fei ; Chen, Yongyong ; Peng, Chong ; Wang, Yongli ; Liu, Xuefeng ; He, Guoping</creator><creatorcontrib>Xu, Fei ; Chen, Yongyong ; Peng, Chong ; Wang, Yongli ; Liu, Xuefeng ; He, Guoping</creatorcontrib><description>Restoration of hyperspectral images (HSIs) is a challenging task, owing to the reason that images are inevitably contaminated by a mixture of noise, including Gaussian noise, impulse noise, dead lines, and stripes, during their acquisition process. Recently, HSI denoising approaches based on low-rank matrix approximation have become an active research field in remote sensing and have achieved state-of-the-art performance. These approaches, however, unavoidably require to calculate full or partial singular value decomposition of large matrices, leading to the relatively high computational cost and limiting their flexibility. To address this issue, this letter proposes a method exploiting a low-rank matrix factorization scheme, in which the associated robust principal component analysis is solved by the matrix factorization of the low-rank component. Our method needs only an upper bound of the rank of the underlying low-rank matrix rather than the precise value. The experimental results on the simulated and real data sets demonstrate the performance of our method by removing the mixed noise and recovering the severely contaminated images.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2017.2700406</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Approximation ; Computer applications ; Computer simulation ; Constraining ; Contamination ; Data ; Denoising ; Factorization ; Flexibility ; Gaussian noise ; Gaussian process ; hyperspectral image (HSI) ; Hyperspectral imaging ; Image restoration ; Lines ; low-rank matrix factorization ; Matrices (mathematics) ; Matrix decomposition ; Methods ; Noise ; Noise prediction ; Noise reduction ; Principal components analysis ; Recovering ; Remote sensing ; Restoration ; Singular value decomposition ; Sparse matrices ; State of the art</subject><ispartof>IEEE geoscience and remote sensing letters, 2017-07, Vol.14 (7), p.1141-1145</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-dc02b4b6488fecc148fa3adb0383f537b135de78d9bb5429ee504f6c0708d9c3</citedby><cites>FETCH-LOGICAL-c293t-dc02b4b6488fecc148fa3adb0383f537b135de78d9bb5429ee504f6c0708d9c3</cites><orcidid>0000-0002-4004-7511 ; 0000-0001-8221-451X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7932170$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7932170$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Fei</creatorcontrib><creatorcontrib>Chen, Yongyong</creatorcontrib><creatorcontrib>Peng, Chong</creatorcontrib><creatorcontrib>Wang, Yongli</creatorcontrib><creatorcontrib>Liu, Xuefeng</creatorcontrib><creatorcontrib>He, Guoping</creatorcontrib><title>Denoising of Hyperspectral Image Using Low-Rank Matrix Factorization</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Restoration of hyperspectral images (HSIs) is a challenging task, owing to the reason that images are inevitably contaminated by a mixture of noise, including Gaussian noise, impulse noise, dead lines, and stripes, during their acquisition process. Recently, HSI denoising approaches based on low-rank matrix approximation have become an active research field in remote sensing and have achieved state-of-the-art performance. These approaches, however, unavoidably require to calculate full or partial singular value decomposition of large matrices, leading to the relatively high computational cost and limiting their flexibility. To address this issue, this letter proposes a method exploiting a low-rank matrix factorization scheme, in which the associated robust principal component analysis is solved by the matrix factorization of the low-rank component. Our method needs only an upper bound of the rank of the underlying low-rank matrix rather than the precise value. The experimental results on the simulated and real data sets demonstrate the performance of our method by removing the mixed noise and recovering the severely contaminated images.</description><subject>Approximation</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Constraining</subject><subject>Contamination</subject><subject>Data</subject><subject>Denoising</subject><subject>Factorization</subject><subject>Flexibility</subject><subject>Gaussian noise</subject><subject>Gaussian process</subject><subject>hyperspectral image (HSI)</subject><subject>Hyperspectral imaging</subject><subject>Image restoration</subject><subject>Lines</subject><subject>low-rank matrix factorization</subject><subject>Matrices (mathematics)</subject><subject>Matrix decomposition</subject><subject>Methods</subject><subject>Noise</subject><subject>Noise prediction</subject><subject>Noise reduction</subject><subject>Principal components analysis</subject><subject>Recovering</subject><subject>Remote sensing</subject><subject>Restoration</subject><subject>Singular value decomposition</subject><subject>Sparse matrices</subject><subject>State of the art</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKcfQHwp-Nx60yRL8iib-wMVYU7wLaRpOjq3piYdOj-9rRs-3cs959wDP4RuMSQYg3zIZsvXJAXMk5QDUBidoQFmTMTAOD7vd8piJsX7JboKYQOQUiH4AE0mtnZVqOp15MpofmisD401rdfbaLHTaxu9_YmZ-4qXuv6InnXrq-9oqk3rfPWj28rV1-ii1Ntgb05ziFbTp9V4Hmcvs8X4MYtNKkkbFwbSnOajrrm0xmAqSk10kQMRpGSE55iwwnJRyDxnNJXWMqDlyACH7mbIEN0f3zbefe5taNXG7X3dNSosuyyVAljnwkeX8S4Eb0vV-Gqn_UFhUD0r1bNSPSt1YtVl7o6Zylr77-eSpJgD-QVyEGVJ</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Xu, Fei</creator><creator>Chen, Yongyong</creator><creator>Peng, Chong</creator><creator>Wang, Yongli</creator><creator>Liu, Xuefeng</creator><creator>He, Guoping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4004-7511</orcidid><orcidid>https://orcid.org/0000-0001-8221-451X</orcidid></search><sort><creationdate>20170701</creationdate><title>Denoising of Hyperspectral Image Using Low-Rank Matrix Factorization</title><author>Xu, Fei ; Chen, Yongyong ; Peng, Chong ; Wang, Yongli ; Liu, Xuefeng ; He, Guoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-dc02b4b6488fecc148fa3adb0383f537b135de78d9bb5429ee504f6c0708d9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Constraining</topic><topic>Contamination</topic><topic>Data</topic><topic>Denoising</topic><topic>Factorization</topic><topic>Flexibility</topic><topic>Gaussian noise</topic><topic>Gaussian process</topic><topic>hyperspectral image (HSI)</topic><topic>Hyperspectral imaging</topic><topic>Image restoration</topic><topic>Lines</topic><topic>low-rank matrix factorization</topic><topic>Matrices (mathematics)</topic><topic>Matrix decomposition</topic><topic>Methods</topic><topic>Noise</topic><topic>Noise prediction</topic><topic>Noise reduction</topic><topic>Principal components analysis</topic><topic>Recovering</topic><topic>Remote sensing</topic><topic>Restoration</topic><topic>Singular value decomposition</topic><topic>Sparse matrices</topic><topic>State of the art</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Fei</creatorcontrib><creatorcontrib>Chen, Yongyong</creatorcontrib><creatorcontrib>Peng, Chong</creatorcontrib><creatorcontrib>Wang, Yongli</creatorcontrib><creatorcontrib>Liu, Xuefeng</creatorcontrib><creatorcontrib>He, Guoping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Fei</au><au>Chen, Yongyong</au><au>Peng, Chong</au><au>Wang, Yongli</au><au>Liu, Xuefeng</au><au>He, Guoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Denoising of Hyperspectral Image Using Low-Rank Matrix Factorization</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>14</volume><issue>7</issue><spage>1141</spage><epage>1145</epage><pages>1141-1145</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Restoration of hyperspectral images (HSIs) is a challenging task, owing to the reason that images are inevitably contaminated by a mixture of noise, including Gaussian noise, impulse noise, dead lines, and stripes, during their acquisition process. Recently, HSI denoising approaches based on low-rank matrix approximation have become an active research field in remote sensing and have achieved state-of-the-art performance. These approaches, however, unavoidably require to calculate full or partial singular value decomposition of large matrices, leading to the relatively high computational cost and limiting their flexibility. To address this issue, this letter proposes a method exploiting a low-rank matrix factorization scheme, in which the associated robust principal component analysis is solved by the matrix factorization of the low-rank component. Our method needs only an upper bound of the rank of the underlying low-rank matrix rather than the precise value. The experimental results on the simulated and real data sets demonstrate the performance of our method by removing the mixed noise and recovering the severely contaminated images.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2017.2700406</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4004-7511</orcidid><orcidid>https://orcid.org/0000-0001-8221-451X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2017-07, Vol.14 (7), p.1141-1145 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_1913549805 |
source | IEEE Electronic Library (IEL) |
subjects | Approximation Computer applications Computer simulation Constraining Contamination Data Denoising Factorization Flexibility Gaussian noise Gaussian process hyperspectral image (HSI) Hyperspectral imaging Image restoration Lines low-rank matrix factorization Matrices (mathematics) Matrix decomposition Methods Noise Noise prediction Noise reduction Principal components analysis Recovering Remote sensing Restoration Singular value decomposition Sparse matrices State of the art |
title | Denoising of Hyperspectral Image Using Low-Rank Matrix Factorization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Denoising%20of%20Hyperspectral%20Image%20Using%20Low-Rank%20Matrix%20Factorization&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Xu,%20Fei&rft.date=2017-07-01&rft.volume=14&rft.issue=7&rft.spage=1141&rft.epage=1145&rft.pages=1141-1145&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2017.2700406&rft_dat=%3Cproquest_RIE%3E1913549805%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1913549805&rft_id=info:pmid/&rft_ieee_id=7932170&rfr_iscdi=true |