Toward an Improved Wind Quality Control for RapidScat

Quality control (QC) is an essential part of the scatterometer wind retrieval. In the current pencil-beam scatterometer wind processor (PenWP), a maximum likelihood estimator (MLE)-based QC is used to discern between good- and poor-quality winds. MLE QC is generally effective in flagging rain contam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2017-07, Vol.55 (7), p.3922-3930
Hauptverfasser: Wenming Lin, Portabella, Marcos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3930
container_issue 7
container_start_page 3922
container_title IEEE transactions on geoscience and remote sensing
container_volume 55
creator Wenming Lin
Portabella, Marcos
description Quality control (QC) is an essential part of the scatterometer wind retrieval. In the current pencil-beam scatterometer wind processor (PenWP), a maximum likelihood estimator (MLE)-based QC is used to discern between good- and poor-quality winds. MLE QC is generally effective in flagging rain contamination and increased subcell wind variability in the ocean surface wind vectors derived from Ku-band pencil-beam scatterometers, such as the RapidScat (RSCAT) installed on the International Space Station. However, the MLE is not an effective quality indicator over the outer swath where the inversion is underdetermined due to the lack of azimuthal diversity (including lack of horizontal polarized measurements). Besides, it is challenging to discriminate rain contamination from "true" high winds. This paper reviews several wind quality-sensitive indicators derived from the RSCAT data, such as MLE and its spatially averaged value (MLE m ), and the singularity exponents (SE) derived from an image processing technique, called singularity analysis. Their sensitivities to data quality and rain are evaluated using collocated Advanced Scatterometer wind data, and global precipitation measurement satellite's microwave imager rain data, respectively. It shows that MLEm and SE are the most effective indicators for filtering the poorest-quality winds over RSCAT inner and outer swath, respectively. A simple combination of SE and MLEm thresholds is proposed to optimize RSCAT wind QC. Comparing to the operational PenWP QC, the proposed method mitigates over-rejection at high winds, and improves the classification of good- and poor-quality winds.
doi_str_mv 10.1109/TGRS.2017.2683720
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1913521178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7896519</ieee_id><sourcerecordid>1913521178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-f5d810ad9ff42ec732b29590f6e1640db2557cd2ccf91d2a823b17acef03048f3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKs_QNwMuJ56bzJ5LaVoLRTEtuIypHnAlHZSM1Ol_94pLa7O5jv3Hj5C7hFGiKCflpP5YkQB5YgKxSSFCzJAzlUJoqouyQBQi5IqTa_JTduuAbDiKAeEL9Ovzb6wTTHd7nL6Cb74qhtffOztpu4OxTg1XU6bIqZczO2u9gtnu1tyFe2mDXfnHJLP15fl-K2cvU-m4-dZ6RgTXRm5VwjW6xgrGpxkdEU11xBFQFGBX1HOpfPUuajRU6soW6G0LkRgUKnIhuTxdLdf9r0PbWfWaZ-b_qVBjYxTRKl6Ck-Uy6ltc4hml-utzQeDYI52zNGOOdoxZzt95-HUqUMI_7xUWnDU7A9S3198</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1913521178</pqid></control><display><type>article</type><title>Toward an Improved Wind Quality Control for RapidScat</title><source>IEEE Electronic Library (IEL)</source><creator>Wenming Lin ; Portabella, Marcos</creator><creatorcontrib>Wenming Lin ; Portabella, Marcos</creatorcontrib><description>Quality control (QC) is an essential part of the scatterometer wind retrieval. In the current pencil-beam scatterometer wind processor (PenWP), a maximum likelihood estimator (MLE)-based QC is used to discern between good- and poor-quality winds. MLE QC is generally effective in flagging rain contamination and increased subcell wind variability in the ocean surface wind vectors derived from Ku-band pencil-beam scatterometers, such as the RapidScat (RSCAT) installed on the International Space Station. However, the MLE is not an effective quality indicator over the outer swath where the inversion is underdetermined due to the lack of azimuthal diversity (including lack of horizontal polarized measurements). Besides, it is challenging to discriminate rain contamination from "true" high winds. This paper reviews several wind quality-sensitive indicators derived from the RSCAT data, such as MLE and its spatially averaged value (MLE m ), and the singularity exponents (SE) derived from an image processing technique, called singularity analysis. Their sensitivities to data quality and rain are evaluated using collocated Advanced Scatterometer wind data, and global precipitation measurement satellite's microwave imager rain data, respectively. It shows that MLEm and SE are the most effective indicators for filtering the poorest-quality winds over RSCAT inner and outer swath, respectively. A simple combination of SE and MLEm thresholds is proposed to optimize RSCAT wind QC. Comparing to the operational PenWP QC, the proposed method mitigates over-rejection at high winds, and improves the classification of good- and poor-quality winds.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2017.2683720</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atmospheric precipitations ; Classification ; Contamination ; Data processing ; Economic models ; Exponents ; Filtration ; Horizontal polarization ; Image processing ; Indicators ; International Space Station ; Maximum likelihood estimation ; Maximum likelihood estimators ; Measurement ; Methods ; Microprocessors ; Monte Carlo simulation ; Ocean surface ; Pollution ; Precipitation ; Quality control ; Quality control (QC) ; Radar measurements ; Rain ; Rejection ; Retrieval ; Satellites ; scatterometer ; Scatterometers ; Sea measurements ; Sensitivity analysis ; singularity analysis (SA) ; Spaceborne radar ; Surface wind ; Temperature (air-sea) ; Thresholds ; Variability ; Vectors ; Wind ; Wind data ; Wind vectors ; Winds</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2017-07, Vol.55 (7), p.3922-3930</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-f5d810ad9ff42ec732b29590f6e1640db2557cd2ccf91d2a823b17acef03048f3</citedby><cites>FETCH-LOGICAL-c336t-f5d810ad9ff42ec732b29590f6e1640db2557cd2ccf91d2a823b17acef03048f3</cites><orcidid>0000-0002-6455-4630</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7896519$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7896519$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wenming Lin</creatorcontrib><creatorcontrib>Portabella, Marcos</creatorcontrib><title>Toward an Improved Wind Quality Control for RapidScat</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Quality control (QC) is an essential part of the scatterometer wind retrieval. In the current pencil-beam scatterometer wind processor (PenWP), a maximum likelihood estimator (MLE)-based QC is used to discern between good- and poor-quality winds. MLE QC is generally effective in flagging rain contamination and increased subcell wind variability in the ocean surface wind vectors derived from Ku-band pencil-beam scatterometers, such as the RapidScat (RSCAT) installed on the International Space Station. However, the MLE is not an effective quality indicator over the outer swath where the inversion is underdetermined due to the lack of azimuthal diversity (including lack of horizontal polarized measurements). Besides, it is challenging to discriminate rain contamination from "true" high winds. This paper reviews several wind quality-sensitive indicators derived from the RSCAT data, such as MLE and its spatially averaged value (MLE m ), and the singularity exponents (SE) derived from an image processing technique, called singularity analysis. Their sensitivities to data quality and rain are evaluated using collocated Advanced Scatterometer wind data, and global precipitation measurement satellite's microwave imager rain data, respectively. It shows that MLEm and SE are the most effective indicators for filtering the poorest-quality winds over RSCAT inner and outer swath, respectively. A simple combination of SE and MLEm thresholds is proposed to optimize RSCAT wind QC. Comparing to the operational PenWP QC, the proposed method mitigates over-rejection at high winds, and improves the classification of good- and poor-quality winds.</description><subject>Atmospheric precipitations</subject><subject>Classification</subject><subject>Contamination</subject><subject>Data processing</subject><subject>Economic models</subject><subject>Exponents</subject><subject>Filtration</subject><subject>Horizontal polarization</subject><subject>Image processing</subject><subject>Indicators</subject><subject>International Space Station</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Measurement</subject><subject>Methods</subject><subject>Microprocessors</subject><subject>Monte Carlo simulation</subject><subject>Ocean surface</subject><subject>Pollution</subject><subject>Precipitation</subject><subject>Quality control</subject><subject>Quality control (QC)</subject><subject>Radar measurements</subject><subject>Rain</subject><subject>Rejection</subject><subject>Retrieval</subject><subject>Satellites</subject><subject>scatterometer</subject><subject>Scatterometers</subject><subject>Sea measurements</subject><subject>Sensitivity analysis</subject><subject>singularity analysis (SA)</subject><subject>Spaceborne radar</subject><subject>Surface wind</subject><subject>Temperature (air-sea)</subject><subject>Thresholds</subject><subject>Variability</subject><subject>Vectors</subject><subject>Wind</subject><subject>Wind data</subject><subject>Wind vectors</subject><subject>Winds</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKs_QNwMuJ56bzJ5LaVoLRTEtuIypHnAlHZSM1Ol_94pLa7O5jv3Hj5C7hFGiKCflpP5YkQB5YgKxSSFCzJAzlUJoqouyQBQi5IqTa_JTduuAbDiKAeEL9Ovzb6wTTHd7nL6Cb74qhtffOztpu4OxTg1XU6bIqZczO2u9gtnu1tyFe2mDXfnHJLP15fl-K2cvU-m4-dZ6RgTXRm5VwjW6xgrGpxkdEU11xBFQFGBX1HOpfPUuajRU6soW6G0LkRgUKnIhuTxdLdf9r0PbWfWaZ-b_qVBjYxTRKl6Ck-Uy6ltc4hml-utzQeDYI52zNGOOdoxZzt95-HUqUMI_7xUWnDU7A9S3198</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Wenming Lin</creator><creator>Portabella, Marcos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6455-4630</orcidid></search><sort><creationdate>201707</creationdate><title>Toward an Improved Wind Quality Control for RapidScat</title><author>Wenming Lin ; Portabella, Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-f5d810ad9ff42ec732b29590f6e1640db2557cd2ccf91d2a823b17acef03048f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atmospheric precipitations</topic><topic>Classification</topic><topic>Contamination</topic><topic>Data processing</topic><topic>Economic models</topic><topic>Exponents</topic><topic>Filtration</topic><topic>Horizontal polarization</topic><topic>Image processing</topic><topic>Indicators</topic><topic>International Space Station</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Measurement</topic><topic>Methods</topic><topic>Microprocessors</topic><topic>Monte Carlo simulation</topic><topic>Ocean surface</topic><topic>Pollution</topic><topic>Precipitation</topic><topic>Quality control</topic><topic>Quality control (QC)</topic><topic>Radar measurements</topic><topic>Rain</topic><topic>Rejection</topic><topic>Retrieval</topic><topic>Satellites</topic><topic>scatterometer</topic><topic>Scatterometers</topic><topic>Sea measurements</topic><topic>Sensitivity analysis</topic><topic>singularity analysis (SA)</topic><topic>Spaceborne radar</topic><topic>Surface wind</topic><topic>Temperature (air-sea)</topic><topic>Thresholds</topic><topic>Variability</topic><topic>Vectors</topic><topic>Wind</topic><topic>Wind data</topic><topic>Wind vectors</topic><topic>Winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wenming Lin</creatorcontrib><creatorcontrib>Portabella, Marcos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wenming Lin</au><au>Portabella, Marcos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward an Improved Wind Quality Control for RapidScat</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2017-07</date><risdate>2017</risdate><volume>55</volume><issue>7</issue><spage>3922</spage><epage>3930</epage><pages>3922-3930</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Quality control (QC) is an essential part of the scatterometer wind retrieval. In the current pencil-beam scatterometer wind processor (PenWP), a maximum likelihood estimator (MLE)-based QC is used to discern between good- and poor-quality winds. MLE QC is generally effective in flagging rain contamination and increased subcell wind variability in the ocean surface wind vectors derived from Ku-band pencil-beam scatterometers, such as the RapidScat (RSCAT) installed on the International Space Station. However, the MLE is not an effective quality indicator over the outer swath where the inversion is underdetermined due to the lack of azimuthal diversity (including lack of horizontal polarized measurements). Besides, it is challenging to discriminate rain contamination from "true" high winds. This paper reviews several wind quality-sensitive indicators derived from the RSCAT data, such as MLE and its spatially averaged value (MLE m ), and the singularity exponents (SE) derived from an image processing technique, called singularity analysis. Their sensitivities to data quality and rain are evaluated using collocated Advanced Scatterometer wind data, and global precipitation measurement satellite's microwave imager rain data, respectively. It shows that MLEm and SE are the most effective indicators for filtering the poorest-quality winds over RSCAT inner and outer swath, respectively. A simple combination of SE and MLEm thresholds is proposed to optimize RSCAT wind QC. Comparing to the operational PenWP QC, the proposed method mitigates over-rejection at high winds, and improves the classification of good- and poor-quality winds.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2017.2683720</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6455-4630</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2017-07, Vol.55 (7), p.3922-3930
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_1913521178
source IEEE Electronic Library (IEL)
subjects Atmospheric precipitations
Classification
Contamination
Data processing
Economic models
Exponents
Filtration
Horizontal polarization
Image processing
Indicators
International Space Station
Maximum likelihood estimation
Maximum likelihood estimators
Measurement
Methods
Microprocessors
Monte Carlo simulation
Ocean surface
Pollution
Precipitation
Quality control
Quality control (QC)
Radar measurements
Rain
Rejection
Retrieval
Satellites
scatterometer
Scatterometers
Sea measurements
Sensitivity analysis
singularity analysis (SA)
Spaceborne radar
Surface wind
Temperature (air-sea)
Thresholds
Variability
Vectors
Wind
Wind data
Wind vectors
Winds
title Toward an Improved Wind Quality Control for RapidScat
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A14%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20an%20Improved%20Wind%20Quality%20Control%20for%20RapidScat&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Wenming%20Lin&rft.date=2017-07&rft.volume=55&rft.issue=7&rft.spage=3922&rft.epage=3930&rft.pages=3922-3930&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2017.2683720&rft_dat=%3Cproquest_RIE%3E1913521178%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1913521178&rft_id=info:pmid/&rft_ieee_id=7896519&rfr_iscdi=true