Physical Processes Controlling the Spatial Distributions of Relative Humidity in the Tropical Tropopause Layer over the Pacific

The spatial distribution of relative humidity with respect to ice (RHI) in the boreal wintertime tropical tropopause layer (TTL, is asymptotically Equal to 14-18 km) over the Pacific is examined with the measurements provided by the NASA Airborne Tropical TRopopause EXperiment. We also compare the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2017-06, Vol.122 (11), p.6094-6107
Hauptverfasser: Jensen, Eric J., Thornberry, Troy D., Rollins, Andrew W., Ueyama, Rei, Pfister, Leonhard, Bui, Thaopaul, Diskin, Glenn S., Digangi, Joshua P., Hintsa, Eric, Gao, Ru-Shan, Woods, Sarah, Lawson, R. Paul, Pittman, Jasna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6107
container_issue 11
container_start_page 6094
container_title Journal of geophysical research. Atmospheres
container_volume 122
creator Jensen, Eric J.
Thornberry, Troy D.
Rollins, Andrew W.
Ueyama, Rei
Pfister, Leonhard
Bui, Thaopaul
Diskin, Glenn S.
Digangi, Joshua P.
Hintsa, Eric
Gao, Ru-Shan
Woods, Sarah
Lawson, R. Paul
Pittman, Jasna
description The spatial distribution of relative humidity with respect to ice (RHI) in the boreal wintertime tropical tropopause layer (TTL, is asymptotically Equal to 14-18 km) over the Pacific is examined with the measurements provided by the NASA Airborne Tropical TRopopause EXperiment. We also compare the measured RHI distributions with results from a transport and microphysical model driven by meteorological analysis fields. Notable features in the distribution of RHI versus temperature and longitude include (1) the common occurrence of RHI values near ice saturation over the western Pacific in the lower to middle TTL; (2) low RHI values in the lower TTL over the central and eastern Pacific; (3) common occurrence of RHI values following a constant mixing ratio in the middle to upper TTL (temperatures between 190 and 200 K); (4) RHI values typically near ice saturation in the coldest airmasses sampled; and (5) RHI values typically near 100% across the TTL temperature range in air parcels with ozone mixing ratios less than 50 ppbv. We suggest that the typically saturated air in the lower TTL over the western Pacific is likely driven by a combination of the frequent occurrence of deep convection and the predominance of rising motion in this region. The nearly constant water vapor mixing ratios in the middle to upper TTL likely result from the combination of slow ascent (resulting in long residence times) and wave-driven temperature variability. The numerical simulations generally reproduce the observed RHI distribution features, and sensitivity tests further emphasize the strong influence of convective input and vertical motions on TTL relative humidity.
doi_str_mv 10.1002/2017JD026632
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1913377853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1913377853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3660-3d6e093ca88a5400b24abc2d253516dc0f6fdd3d541a4f58fe797f4e44deafc33</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoOOZuHj0EvFpNmh9tj7Lp5hg45gRvJUsTl9E1NWknPfmv264innyH977wPu_74AvAJUa3GKHwLkQ4mk9QyDkJT8AgxDwJ4iThp786ejsHI-93qK0YEcroAHwtt403UuRw6axU3isPx7aonM1zU7zDaqvgSykq0xIT4ytnNnVlbOGh1XCl8nZzUHBW701mqgaa4nixdrY8mnbClqL2Ci5Eoxy0h7Z1yFJIo428AGda5F6NfuYQvD4-rMezYPE8fRrfLwJJOEcBybhCCZEijgWjCG1CKjYyzEJGGOaZRJrrLCMZo1hQzWKtoiTSVFGaKaElIUNw3fuWzn7UylfpztauaF-mOMGERFHMOuqmp6Sz3jul09KZvXBNilHapZz-TbnFSY9_mlw1_7LpfLqaMBK3uQ_BVX9VCC_SNmp_JBHCiLCEfAM32Ig2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1913377853</pqid></control><display><type>article</type><title>Physical Processes Controlling the Spatial Distributions of Relative Humidity in the Tropical Tropopause Layer over the Pacific</title><source>Access via Wiley Online Library</source><source>NASA Technical Reports Server</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Jensen, Eric J. ; Thornberry, Troy D. ; Rollins, Andrew W. ; Ueyama, Rei ; Pfister, Leonhard ; Bui, Thaopaul ; Diskin, Glenn S. ; Digangi, Joshua P. ; Hintsa, Eric ; Gao, Ru-Shan ; Woods, Sarah ; Lawson, R. Paul ; Pittman, Jasna</creator><creatorcontrib>Jensen, Eric J. ; Thornberry, Troy D. ; Rollins, Andrew W. ; Ueyama, Rei ; Pfister, Leonhard ; Bui, Thaopaul ; Diskin, Glenn S. ; Digangi, Joshua P. ; Hintsa, Eric ; Gao, Ru-Shan ; Woods, Sarah ; Lawson, R. Paul ; Pittman, Jasna</creatorcontrib><description>The spatial distribution of relative humidity with respect to ice (RHI) in the boreal wintertime tropical tropopause layer (TTL, is asymptotically Equal to 14-18 km) over the Pacific is examined with the measurements provided by the NASA Airborne Tropical TRopopause EXperiment. We also compare the measured RHI distributions with results from a transport and microphysical model driven by meteorological analysis fields. Notable features in the distribution of RHI versus temperature and longitude include (1) the common occurrence of RHI values near ice saturation over the western Pacific in the lower to middle TTL; (2) low RHI values in the lower TTL over the central and eastern Pacific; (3) common occurrence of RHI values following a constant mixing ratio in the middle to upper TTL (temperatures between 190 and 200 K); (4) RHI values typically near ice saturation in the coldest airmasses sampled; and (5) RHI values typically near 100% across the TTL temperature range in air parcels with ozone mixing ratios less than 50 ppbv. We suggest that the typically saturated air in the lower TTL over the western Pacific is likely driven by a combination of the frequent occurrence of deep convection and the predominance of rising motion in this region. The nearly constant water vapor mixing ratios in the middle to upper TTL likely result from the combination of slow ascent (resulting in long residence times) and wave-driven temperature variability. The numerical simulations generally reproduce the observed RHI distribution features, and sensitivity tests further emphasize the strong influence of convective input and vertical motions on TTL relative humidity.</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2017JD026632</identifier><language>eng</language><publisher>Ames Research Center: AGU</publisher><subject>Air parcels ; Air temperature ; Airborne sensing ; Ascent ; cirrus ; Computer simulation ; Convection ; Distribution ; Fields ; Geophysics ; humidity ; Ice ; Mathematical models ; Meteorology And Climatology ; Mixing ratio ; Movement ; Numerical Analysis ; Numerical simulations ; Oceanography ; Ozone ; Relative humidity ; Saturation ; Spatial distribution ; Temperature ; Temperature effects ; Temperature range ; Temperature variability ; Tests ; Transport ; Tropical climate ; Tropical tropopause ; Tropopause ; Variability ; Water vapor ; Water vapour</subject><ispartof>Journal of geophysical research. Atmospheres, 2017-06, Vol.122 (11), p.6094-6107</ispartof><rights>Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL</rights><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3660-3d6e093ca88a5400b24abc2d253516dc0f6fdd3d541a4f58fe797f4e44deafc33</citedby><cites>FETCH-LOGICAL-c3660-3d6e093ca88a5400b24abc2d253516dc0f6fdd3d541a4f58fe797f4e44deafc33</cites><orcidid>0000-0001-9189-0405 ; 0000-0002-4319-0065 ; 0000-0001-6985-1637 ; 0000-0003-0927-1563 ; 0000-0002-1020-3966 ; 0000-0003-2174-8889 ; 0000-0003-0840-7780 ; 0000-0002-3617-0269 ; 0000-0001-7478-1944 ; 0000-0002-6764-8624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017JD026632$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017JD026632$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,800,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Jensen, Eric J.</creatorcontrib><creatorcontrib>Thornberry, Troy D.</creatorcontrib><creatorcontrib>Rollins, Andrew W.</creatorcontrib><creatorcontrib>Ueyama, Rei</creatorcontrib><creatorcontrib>Pfister, Leonhard</creatorcontrib><creatorcontrib>Bui, Thaopaul</creatorcontrib><creatorcontrib>Diskin, Glenn S.</creatorcontrib><creatorcontrib>Digangi, Joshua P.</creatorcontrib><creatorcontrib>Hintsa, Eric</creatorcontrib><creatorcontrib>Gao, Ru-Shan</creatorcontrib><creatorcontrib>Woods, Sarah</creatorcontrib><creatorcontrib>Lawson, R. Paul</creatorcontrib><creatorcontrib>Pittman, Jasna</creatorcontrib><title>Physical Processes Controlling the Spatial Distributions of Relative Humidity in the Tropical Tropopause Layer over the Pacific</title><title>Journal of geophysical research. Atmospheres</title><description>The spatial distribution of relative humidity with respect to ice (RHI) in the boreal wintertime tropical tropopause layer (TTL, is asymptotically Equal to 14-18 km) over the Pacific is examined with the measurements provided by the NASA Airborne Tropical TRopopause EXperiment. We also compare the measured RHI distributions with results from a transport and microphysical model driven by meteorological analysis fields. Notable features in the distribution of RHI versus temperature and longitude include (1) the common occurrence of RHI values near ice saturation over the western Pacific in the lower to middle TTL; (2) low RHI values in the lower TTL over the central and eastern Pacific; (3) common occurrence of RHI values following a constant mixing ratio in the middle to upper TTL (temperatures between 190 and 200 K); (4) RHI values typically near ice saturation in the coldest airmasses sampled; and (5) RHI values typically near 100% across the TTL temperature range in air parcels with ozone mixing ratios less than 50 ppbv. We suggest that the typically saturated air in the lower TTL over the western Pacific is likely driven by a combination of the frequent occurrence of deep convection and the predominance of rising motion in this region. The nearly constant water vapor mixing ratios in the middle to upper TTL likely result from the combination of slow ascent (resulting in long residence times) and wave-driven temperature variability. The numerical simulations generally reproduce the observed RHI distribution features, and sensitivity tests further emphasize the strong influence of convective input and vertical motions on TTL relative humidity.</description><subject>Air parcels</subject><subject>Air temperature</subject><subject>Airborne sensing</subject><subject>Ascent</subject><subject>cirrus</subject><subject>Computer simulation</subject><subject>Convection</subject><subject>Distribution</subject><subject>Fields</subject><subject>Geophysics</subject><subject>humidity</subject><subject>Ice</subject><subject>Mathematical models</subject><subject>Meteorology And Climatology</subject><subject>Mixing ratio</subject><subject>Movement</subject><subject>Numerical Analysis</subject><subject>Numerical simulations</subject><subject>Oceanography</subject><subject>Ozone</subject><subject>Relative humidity</subject><subject>Saturation</subject><subject>Spatial distribution</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Temperature range</subject><subject>Temperature variability</subject><subject>Tests</subject><subject>Transport</subject><subject>Tropical climate</subject><subject>Tropical tropopause</subject><subject>Tropopause</subject><subject>Variability</subject><subject>Water vapor</subject><subject>Water vapour</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp9kM9LwzAUx4MoOOZuHj0EvFpNmh9tj7Lp5hg45gRvJUsTl9E1NWknPfmv264innyH977wPu_74AvAJUa3GKHwLkQ4mk9QyDkJT8AgxDwJ4iThp786ejsHI-93qK0YEcroAHwtt403UuRw6axU3isPx7aonM1zU7zDaqvgSykq0xIT4ytnNnVlbOGh1XCl8nZzUHBW701mqgaa4nixdrY8mnbClqL2Ci5Eoxy0h7Z1yFJIo428AGda5F6NfuYQvD4-rMezYPE8fRrfLwJJOEcBybhCCZEijgWjCG1CKjYyzEJGGOaZRJrrLCMZo1hQzWKtoiTSVFGaKaElIUNw3fuWzn7UylfpztauaF-mOMGERFHMOuqmp6Sz3jul09KZvXBNilHapZz-TbnFSY9_mlw1_7LpfLqaMBK3uQ_BVX9VCC_SNmp_JBHCiLCEfAM32Ig2</recordid><startdate>20170616</startdate><enddate>20170616</enddate><creator>Jensen, Eric J.</creator><creator>Thornberry, Troy D.</creator><creator>Rollins, Andrew W.</creator><creator>Ueyama, Rei</creator><creator>Pfister, Leonhard</creator><creator>Bui, Thaopaul</creator><creator>Diskin, Glenn S.</creator><creator>Digangi, Joshua P.</creator><creator>Hintsa, Eric</creator><creator>Gao, Ru-Shan</creator><creator>Woods, Sarah</creator><creator>Lawson, R. Paul</creator><creator>Pittman, Jasna</creator><general>AGU</general><general>Blackwell Publishing Ltd</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9189-0405</orcidid><orcidid>https://orcid.org/0000-0002-4319-0065</orcidid><orcidid>https://orcid.org/0000-0001-6985-1637</orcidid><orcidid>https://orcid.org/0000-0003-0927-1563</orcidid><orcidid>https://orcid.org/0000-0002-1020-3966</orcidid><orcidid>https://orcid.org/0000-0003-2174-8889</orcidid><orcidid>https://orcid.org/0000-0003-0840-7780</orcidid><orcidid>https://orcid.org/0000-0002-3617-0269</orcidid><orcidid>https://orcid.org/0000-0001-7478-1944</orcidid><orcidid>https://orcid.org/0000-0002-6764-8624</orcidid></search><sort><creationdate>20170616</creationdate><title>Physical Processes Controlling the Spatial Distributions of Relative Humidity in the Tropical Tropopause Layer over the Pacific</title><author>Jensen, Eric J. ; Thornberry, Troy D. ; Rollins, Andrew W. ; Ueyama, Rei ; Pfister, Leonhard ; Bui, Thaopaul ; Diskin, Glenn S. ; Digangi, Joshua P. ; Hintsa, Eric ; Gao, Ru-Shan ; Woods, Sarah ; Lawson, R. Paul ; Pittman, Jasna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3660-3d6e093ca88a5400b24abc2d253516dc0f6fdd3d541a4f58fe797f4e44deafc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Air parcels</topic><topic>Air temperature</topic><topic>Airborne sensing</topic><topic>Ascent</topic><topic>cirrus</topic><topic>Computer simulation</topic><topic>Convection</topic><topic>Distribution</topic><topic>Fields</topic><topic>Geophysics</topic><topic>humidity</topic><topic>Ice</topic><topic>Mathematical models</topic><topic>Meteorology And Climatology</topic><topic>Mixing ratio</topic><topic>Movement</topic><topic>Numerical Analysis</topic><topic>Numerical simulations</topic><topic>Oceanography</topic><topic>Ozone</topic><topic>Relative humidity</topic><topic>Saturation</topic><topic>Spatial distribution</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Temperature range</topic><topic>Temperature variability</topic><topic>Tests</topic><topic>Transport</topic><topic>Tropical climate</topic><topic>Tropical tropopause</topic><topic>Tropopause</topic><topic>Variability</topic><topic>Water vapor</topic><topic>Water vapour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jensen, Eric J.</creatorcontrib><creatorcontrib>Thornberry, Troy D.</creatorcontrib><creatorcontrib>Rollins, Andrew W.</creatorcontrib><creatorcontrib>Ueyama, Rei</creatorcontrib><creatorcontrib>Pfister, Leonhard</creatorcontrib><creatorcontrib>Bui, Thaopaul</creatorcontrib><creatorcontrib>Diskin, Glenn S.</creatorcontrib><creatorcontrib>Digangi, Joshua P.</creatorcontrib><creatorcontrib>Hintsa, Eric</creatorcontrib><creatorcontrib>Gao, Ru-Shan</creatorcontrib><creatorcontrib>Woods, Sarah</creatorcontrib><creatorcontrib>Lawson, R. Paul</creatorcontrib><creatorcontrib>Pittman, Jasna</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jensen, Eric J.</au><au>Thornberry, Troy D.</au><au>Rollins, Andrew W.</au><au>Ueyama, Rei</au><au>Pfister, Leonhard</au><au>Bui, Thaopaul</au><au>Diskin, Glenn S.</au><au>Digangi, Joshua P.</au><au>Hintsa, Eric</au><au>Gao, Ru-Shan</au><au>Woods, Sarah</au><au>Lawson, R. Paul</au><au>Pittman, Jasna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical Processes Controlling the Spatial Distributions of Relative Humidity in the Tropical Tropopause Layer over the Pacific</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2017-06-16</date><risdate>2017</risdate><volume>122</volume><issue>11</issue><spage>6094</spage><epage>6107</epage><pages>6094-6107</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>The spatial distribution of relative humidity with respect to ice (RHI) in the boreal wintertime tropical tropopause layer (TTL, is asymptotically Equal to 14-18 km) over the Pacific is examined with the measurements provided by the NASA Airborne Tropical TRopopause EXperiment. We also compare the measured RHI distributions with results from a transport and microphysical model driven by meteorological analysis fields. Notable features in the distribution of RHI versus temperature and longitude include (1) the common occurrence of RHI values near ice saturation over the western Pacific in the lower to middle TTL; (2) low RHI values in the lower TTL over the central and eastern Pacific; (3) common occurrence of RHI values following a constant mixing ratio in the middle to upper TTL (temperatures between 190 and 200 K); (4) RHI values typically near ice saturation in the coldest airmasses sampled; and (5) RHI values typically near 100% across the TTL temperature range in air parcels with ozone mixing ratios less than 50 ppbv. We suggest that the typically saturated air in the lower TTL over the western Pacific is likely driven by a combination of the frequent occurrence of deep convection and the predominance of rising motion in this region. The nearly constant water vapor mixing ratios in the middle to upper TTL likely result from the combination of slow ascent (resulting in long residence times) and wave-driven temperature variability. The numerical simulations generally reproduce the observed RHI distribution features, and sensitivity tests further emphasize the strong influence of convective input and vertical motions on TTL relative humidity.</abstract><cop>Ames Research Center</cop><pub>AGU</pub><doi>10.1002/2017JD026632</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9189-0405</orcidid><orcidid>https://orcid.org/0000-0002-4319-0065</orcidid><orcidid>https://orcid.org/0000-0001-6985-1637</orcidid><orcidid>https://orcid.org/0000-0003-0927-1563</orcidid><orcidid>https://orcid.org/0000-0002-1020-3966</orcidid><orcidid>https://orcid.org/0000-0003-2174-8889</orcidid><orcidid>https://orcid.org/0000-0003-0840-7780</orcidid><orcidid>https://orcid.org/0000-0002-3617-0269</orcidid><orcidid>https://orcid.org/0000-0001-7478-1944</orcidid><orcidid>https://orcid.org/0000-0002-6764-8624</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2017-06, Vol.122 (11), p.6094-6107
issn 2169-897X
2169-8996
language eng
recordid cdi_proquest_journals_1913377853
source Access via Wiley Online Library; NASA Technical Reports Server; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Air parcels
Air temperature
Airborne sensing
Ascent
cirrus
Computer simulation
Convection
Distribution
Fields
Geophysics
humidity
Ice
Mathematical models
Meteorology And Climatology
Mixing ratio
Movement
Numerical Analysis
Numerical simulations
Oceanography
Ozone
Relative humidity
Saturation
Spatial distribution
Temperature
Temperature effects
Temperature range
Temperature variability
Tests
Transport
Tropical climate
Tropical tropopause
Tropopause
Variability
Water vapor
Water vapour
title Physical Processes Controlling the Spatial Distributions of Relative Humidity in the Tropical Tropopause Layer over the Pacific
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A40%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20Processes%20Controlling%20the%20Spatial%20Distributions%20of%20Relative%20Humidity%20in%20the%20Tropical%20Tropopause%20Layer%20over%20the%20Pacific&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Jensen,%20Eric%20J.&rft.date=2017-06-16&rft.volume=122&rft.issue=11&rft.spage=6094&rft.epage=6107&rft.pages=6094-6107&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2017JD026632&rft_dat=%3Cproquest_cross%3E1913377853%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1913377853&rft_id=info:pmid/&rfr_iscdi=true