Orographic rainfall hot spots in the Andes‐Amazon transition according to the TRMM precipitation radar and in situ data
The Andes‐Amazon transition, along the eastern Peruvian Andes, features “hot spots” with strong precipitation. Using 15 years of Tropical Rainfall Measuring Mission PR data we established a robust relation between terrain elevation and mean surface precipitation, with the latter peaking around 1000 ...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Atmospheres 2017-06, Vol.122 (11), p.5870-5882 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5882 |
---|---|
container_issue | 11 |
container_start_page | 5870 |
container_title | Journal of geophysical research. Atmospheres |
container_volume | 122 |
creator | Chavez, Steven P. Takahashi, Ken |
description | The Andes‐Amazon transition, along the eastern Peruvian Andes, features “hot spots” with strong precipitation. Using 15 years of Tropical Rainfall Measuring Mission PR data we established a robust relation between terrain elevation and mean surface precipitation, with the latter peaking around 1000 m above sea level (asl), coinciding with the moisture flux peak of the South American Low Level Jet (SALLJ). There is strong diurnal variability, with afternoon (13–18 LT) convection in the Amazon plains, while on the eastern slopes (1000–2000 m asl), after the forcing associated with the thermal heating of the Andes subsides, convection grows during the night and surface precipitation peaks around 01–06 LT and organizes into mesoscale convective systems (MCSs). These then displace downslope to an terrain elevation of 700 m asl with stratiform regions spreading upslope and downslope and then decay during the remainder of the morning. The large MCSs contribute with at least 50% of daily rainfall (60% of the 01–06 LT rainfall). On synoptic scales, the large MCSs are more common in stronger SALLJ conditions, although subtropical cold surges are responsible for 16% of the cases.
Key Points
Robust relation found between precipitation and terrain elevation with a peak at ~1000 m asl coincident with the SALLJ moisture flux profile
Mean precipitation depends strongly on the diurnal cycle and indicates nocturnal organization of storms into mesoscale convective systems
Large precipitation features (MCS) are relatively rare but contribute at least 50% of the total precipitation on the eastern Andes |
doi_str_mv | 10.1002/2016JD026282 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1913377847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1913377847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3508-4eba1cef49449612a23af7c435f186b084649d2f2b66992436f2184da8d159803</originalsourceid><addsrcrecordid>eNp9kM9OAjEQxjdGEwly8wGaeBXtv-22RwKKEogJwcTbZuh2oQS2a7vE4MlH8Bl9EgsY48m5zJfJb-bLfElySfANwZjeUkzEaICpoJKeJC1KhOpKpcTpr85ezpNOCCscS2LGU95Kdk_eLTzUS6uRB1uVsF6jpWtQqF0TkK1QszSoVxUmfH189jbw7uLIQxVsY6MErZ0vbLVAjTugs-lkgmpvtK1tAwfGQwEeQVXsz8W9LSqggYvkLJoF0_np7eT5_m7Wf-iOn4aP_d64q1mKZZebORBtSq44V4JQoAzKTHOWlkSKOZZccFXQks6FUIpyJkpKJC9AFiRV8c12cnW8W3v3ujWhyVdu66tomRNFGMsyybNIXR8p7V0I3pR57e0G_C4nON_nm__NN-LsiL_Ztdn9y-aj4XSQMplK9g0iKHxn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1913377847</pqid></control><display><type>article</type><title>Orographic rainfall hot spots in the Andes‐Amazon transition according to the TRMM precipitation radar and in situ data</title><source>Wiley Online Library Free Content</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Chavez, Steven P. ; Takahashi, Ken</creator><creatorcontrib>Chavez, Steven P. ; Takahashi, Ken</creatorcontrib><description>The Andes‐Amazon transition, along the eastern Peruvian Andes, features “hot spots” with strong precipitation. Using 15 years of Tropical Rainfall Measuring Mission PR data we established a robust relation between terrain elevation and mean surface precipitation, with the latter peaking around 1000 m above sea level (asl), coinciding with the moisture flux peak of the South American Low Level Jet (SALLJ). There is strong diurnal variability, with afternoon (13–18 LT) convection in the Amazon plains, while on the eastern slopes (1000–2000 m asl), after the forcing associated with the thermal heating of the Andes subsides, convection grows during the night and surface precipitation peaks around 01–06 LT and organizes into mesoscale convective systems (MCSs). These then displace downslope to an terrain elevation of 700 m asl with stratiform regions spreading upslope and downslope and then decay during the remainder of the morning. The large MCSs contribute with at least 50% of daily rainfall (60% of the 01–06 LT rainfall). On synoptic scales, the large MCSs are more common in stronger SALLJ conditions, although subtropical cold surges are responsible for 16% of the cases.
Key Points
Robust relation found between precipitation and terrain elevation with a peak at ~1000 m asl coincident with the SALLJ moisture flux profile
Mean precipitation depends strongly on the diurnal cycle and indicates nocturnal organization of storms into mesoscale convective systems
Large precipitation features (MCS) are relatively rare but contribute at least 50% of the total precipitation on the eastern Andes</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2016JD026282</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Amazon ; Andes ; Atmospheric precipitations ; Cold surges ; Convection ; Convection heating ; Daily precipitation ; Data ; Decay ; Displacement ; Diurnal cycle ; Diurnal variations ; Elevation ; Flux ; Geophysics ; Heating ; Hot spots ; in situ measurements ; Loads (forces) ; Low level ; Low-level jets ; Mean precipitation ; Mesoscale convective systems ; Mesoscale phenomena ; Moisture ; Moisture flux ; Night ; Organizations ; orographic rainfall ; Plains ; Precipitation ; precipitation radar ; Radar ; Rain ; Rainfall ; Sea level ; Slope ; Spots ; Storms ; Surges ; Terrain ; TRMM ; Tropical climate ; Tropical rainfall ; Variability</subject><ispartof>Journal of geophysical research. Atmospheres, 2017-06, Vol.122 (11), p.5870-5882</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3508-4eba1cef49449612a23af7c435f186b084649d2f2b66992436f2184da8d159803</citedby><cites>FETCH-LOGICAL-c3508-4eba1cef49449612a23af7c435f186b084649d2f2b66992436f2184da8d159803</cites><orcidid>0000-0002-1591-0782 ; 0000-0003-3670-2939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016JD026282$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016JD026282$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1413,1429,27906,27907,45556,45557,46391,46815</link.rule.ids></links><search><creatorcontrib>Chavez, Steven P.</creatorcontrib><creatorcontrib>Takahashi, Ken</creatorcontrib><title>Orographic rainfall hot spots in the Andes‐Amazon transition according to the TRMM precipitation radar and in situ data</title><title>Journal of geophysical research. Atmospheres</title><description>The Andes‐Amazon transition, along the eastern Peruvian Andes, features “hot spots” with strong precipitation. Using 15 years of Tropical Rainfall Measuring Mission PR data we established a robust relation between terrain elevation and mean surface precipitation, with the latter peaking around 1000 m above sea level (asl), coinciding with the moisture flux peak of the South American Low Level Jet (SALLJ). There is strong diurnal variability, with afternoon (13–18 LT) convection in the Amazon plains, while on the eastern slopes (1000–2000 m asl), after the forcing associated with the thermal heating of the Andes subsides, convection grows during the night and surface precipitation peaks around 01–06 LT and organizes into mesoscale convective systems (MCSs). These then displace downslope to an terrain elevation of 700 m asl with stratiform regions spreading upslope and downslope and then decay during the remainder of the morning. The large MCSs contribute with at least 50% of daily rainfall (60% of the 01–06 LT rainfall). On synoptic scales, the large MCSs are more common in stronger SALLJ conditions, although subtropical cold surges are responsible for 16% of the cases.
Key Points
Robust relation found between precipitation and terrain elevation with a peak at ~1000 m asl coincident with the SALLJ moisture flux profile
Mean precipitation depends strongly on the diurnal cycle and indicates nocturnal organization of storms into mesoscale convective systems
Large precipitation features (MCS) are relatively rare but contribute at least 50% of the total precipitation on the eastern Andes</description><subject>Amazon</subject><subject>Andes</subject><subject>Atmospheric precipitations</subject><subject>Cold surges</subject><subject>Convection</subject><subject>Convection heating</subject><subject>Daily precipitation</subject><subject>Data</subject><subject>Decay</subject><subject>Displacement</subject><subject>Diurnal cycle</subject><subject>Diurnal variations</subject><subject>Elevation</subject><subject>Flux</subject><subject>Geophysics</subject><subject>Heating</subject><subject>Hot spots</subject><subject>in situ measurements</subject><subject>Loads (forces)</subject><subject>Low level</subject><subject>Low-level jets</subject><subject>Mean precipitation</subject><subject>Mesoscale convective systems</subject><subject>Mesoscale phenomena</subject><subject>Moisture</subject><subject>Moisture flux</subject><subject>Night</subject><subject>Organizations</subject><subject>orographic rainfall</subject><subject>Plains</subject><subject>Precipitation</subject><subject>precipitation radar</subject><subject>Radar</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Sea level</subject><subject>Slope</subject><subject>Spots</subject><subject>Storms</subject><subject>Surges</subject><subject>Terrain</subject><subject>TRMM</subject><subject>Tropical climate</subject><subject>Tropical rainfall</subject><subject>Variability</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OAjEQxjdGEwly8wGaeBXtv-22RwKKEogJwcTbZuh2oQS2a7vE4MlH8Bl9EgsY48m5zJfJb-bLfElySfANwZjeUkzEaICpoJKeJC1KhOpKpcTpr85ezpNOCCscS2LGU95Kdk_eLTzUS6uRB1uVsF6jpWtQqF0TkK1QszSoVxUmfH189jbw7uLIQxVsY6MErZ0vbLVAjTugs-lkgmpvtK1tAwfGQwEeQVXsz8W9LSqggYvkLJoF0_np7eT5_m7Wf-iOn4aP_d64q1mKZZebORBtSq44V4JQoAzKTHOWlkSKOZZccFXQks6FUIpyJkpKJC9AFiRV8c12cnW8W3v3ujWhyVdu66tomRNFGMsyybNIXR8p7V0I3pR57e0G_C4nON_nm__NN-LsiL_Ztdn9y-aj4XSQMplK9g0iKHxn</recordid><startdate>20170616</startdate><enddate>20170616</enddate><creator>Chavez, Steven P.</creator><creator>Takahashi, Ken</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1591-0782</orcidid><orcidid>https://orcid.org/0000-0003-3670-2939</orcidid></search><sort><creationdate>20170616</creationdate><title>Orographic rainfall hot spots in the Andes‐Amazon transition according to the TRMM precipitation radar and in situ data</title><author>Chavez, Steven P. ; Takahashi, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3508-4eba1cef49449612a23af7c435f186b084649d2f2b66992436f2184da8d159803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amazon</topic><topic>Andes</topic><topic>Atmospheric precipitations</topic><topic>Cold surges</topic><topic>Convection</topic><topic>Convection heating</topic><topic>Daily precipitation</topic><topic>Data</topic><topic>Decay</topic><topic>Displacement</topic><topic>Diurnal cycle</topic><topic>Diurnal variations</topic><topic>Elevation</topic><topic>Flux</topic><topic>Geophysics</topic><topic>Heating</topic><topic>Hot spots</topic><topic>in situ measurements</topic><topic>Loads (forces)</topic><topic>Low level</topic><topic>Low-level jets</topic><topic>Mean precipitation</topic><topic>Mesoscale convective systems</topic><topic>Mesoscale phenomena</topic><topic>Moisture</topic><topic>Moisture flux</topic><topic>Night</topic><topic>Organizations</topic><topic>orographic rainfall</topic><topic>Plains</topic><topic>Precipitation</topic><topic>precipitation radar</topic><topic>Radar</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Sea level</topic><topic>Slope</topic><topic>Spots</topic><topic>Storms</topic><topic>Surges</topic><topic>Terrain</topic><topic>TRMM</topic><topic>Tropical climate</topic><topic>Tropical rainfall</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chavez, Steven P.</creatorcontrib><creatorcontrib>Takahashi, Ken</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chavez, Steven P.</au><au>Takahashi, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orographic rainfall hot spots in the Andes‐Amazon transition according to the TRMM precipitation radar and in situ data</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2017-06-16</date><risdate>2017</risdate><volume>122</volume><issue>11</issue><spage>5870</spage><epage>5882</epage><pages>5870-5882</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>The Andes‐Amazon transition, along the eastern Peruvian Andes, features “hot spots” with strong precipitation. Using 15 years of Tropical Rainfall Measuring Mission PR data we established a robust relation between terrain elevation and mean surface precipitation, with the latter peaking around 1000 m above sea level (asl), coinciding with the moisture flux peak of the South American Low Level Jet (SALLJ). There is strong diurnal variability, with afternoon (13–18 LT) convection in the Amazon plains, while on the eastern slopes (1000–2000 m asl), after the forcing associated with the thermal heating of the Andes subsides, convection grows during the night and surface precipitation peaks around 01–06 LT and organizes into mesoscale convective systems (MCSs). These then displace downslope to an terrain elevation of 700 m asl with stratiform regions spreading upslope and downslope and then decay during the remainder of the morning. The large MCSs contribute with at least 50% of daily rainfall (60% of the 01–06 LT rainfall). On synoptic scales, the large MCSs are more common in stronger SALLJ conditions, although subtropical cold surges are responsible for 16% of the cases.
Key Points
Robust relation found between precipitation and terrain elevation with a peak at ~1000 m asl coincident with the SALLJ moisture flux profile
Mean precipitation depends strongly on the diurnal cycle and indicates nocturnal organization of storms into mesoscale convective systems
Large precipitation features (MCS) are relatively rare but contribute at least 50% of the total precipitation on the eastern Andes</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2016JD026282</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1591-0782</orcidid><orcidid>https://orcid.org/0000-0003-3670-2939</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-897X |
ispartof | Journal of geophysical research. Atmospheres, 2017-06, Vol.122 (11), p.5870-5882 |
issn | 2169-897X 2169-8996 |
language | eng |
recordid | cdi_proquest_journals_1913377847 |
source | Wiley Online Library Free Content; Wiley Online Library All Journals; Alma/SFX Local Collection |
subjects | Amazon Andes Atmospheric precipitations Cold surges Convection Convection heating Daily precipitation Data Decay Displacement Diurnal cycle Diurnal variations Elevation Flux Geophysics Heating Hot spots in situ measurements Loads (forces) Low level Low-level jets Mean precipitation Mesoscale convective systems Mesoscale phenomena Moisture Moisture flux Night Organizations orographic rainfall Plains Precipitation precipitation radar Radar Rain Rainfall Sea level Slope Spots Storms Surges Terrain TRMM Tropical climate Tropical rainfall Variability |
title | Orographic rainfall hot spots in the Andes‐Amazon transition according to the TRMM precipitation radar and in situ data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A34%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orographic%20rainfall%20hot%20spots%20in%20the%20Andes%E2%80%90Amazon%20transition%20according%20to%20the%20TRMM%20precipitation%20radar%20and%20in%20situ%20data&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Chavez,%20Steven%20P.&rft.date=2017-06-16&rft.volume=122&rft.issue=11&rft.spage=5870&rft.epage=5882&rft.pages=5870-5882&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2016JD026282&rft_dat=%3Cproquest_cross%3E1913377847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1913377847&rft_id=info:pmid/&rfr_iscdi=true |