Orographic rainfall hot spots in the Andes‐Amazon transition according to the TRMM precipitation radar and in situ data

The Andes‐Amazon transition, along the eastern Peruvian Andes, features “hot spots” with strong precipitation. Using 15 years of Tropical Rainfall Measuring Mission PR data we established a robust relation between terrain elevation and mean surface precipitation, with the latter peaking around 1000 ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2017-06, Vol.122 (11), p.5870-5882
Hauptverfasser: Chavez, Steven P., Takahashi, Ken
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5882
container_issue 11
container_start_page 5870
container_title Journal of geophysical research. Atmospheres
container_volume 122
creator Chavez, Steven P.
Takahashi, Ken
description The Andes‐Amazon transition, along the eastern Peruvian Andes, features “hot spots” with strong precipitation. Using 15 years of Tropical Rainfall Measuring Mission PR data we established a robust relation between terrain elevation and mean surface precipitation, with the latter peaking around 1000 m above sea level (asl), coinciding with the moisture flux peak of the South American Low Level Jet (SALLJ). There is strong diurnal variability, with afternoon (13–18 LT) convection in the Amazon plains, while on the eastern slopes (1000–2000 m asl), after the forcing associated with the thermal heating of the Andes subsides, convection grows during the night and surface precipitation peaks around 01–06 LT and organizes into mesoscale convective systems (MCSs). These then displace downslope to an terrain elevation of 700 m asl with stratiform regions spreading upslope and downslope and then decay during the remainder of the morning. The large MCSs contribute with at least 50% of daily rainfall (60% of the 01–06 LT rainfall). On synoptic scales, the large MCSs are more common in stronger SALLJ conditions, although subtropical cold surges are responsible for 16% of the cases. Key Points Robust relation found between precipitation and terrain elevation with a peak at ~1000 m asl coincident with the SALLJ moisture flux profile Mean precipitation depends strongly on the diurnal cycle and indicates nocturnal organization of storms into mesoscale convective systems Large precipitation features (MCS) are relatively rare but contribute at least 50% of the total precipitation on the eastern Andes
doi_str_mv 10.1002/2016JD026282
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1913377847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1913377847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3508-4eba1cef49449612a23af7c435f186b084649d2f2b66992436f2184da8d159803</originalsourceid><addsrcrecordid>eNp9kM9OAjEQxjdGEwly8wGaeBXtv-22RwKKEogJwcTbZuh2oQS2a7vE4MlH8Bl9EgsY48m5zJfJb-bLfElySfANwZjeUkzEaICpoJKeJC1KhOpKpcTpr85ezpNOCCscS2LGU95Kdk_eLTzUS6uRB1uVsF6jpWtQqF0TkK1QszSoVxUmfH189jbw7uLIQxVsY6MErZ0vbLVAjTugs-lkgmpvtK1tAwfGQwEeQVXsz8W9LSqggYvkLJoF0_np7eT5_m7Wf-iOn4aP_d64q1mKZZebORBtSq44V4JQoAzKTHOWlkSKOZZccFXQks6FUIpyJkpKJC9AFiRV8c12cnW8W3v3ujWhyVdu66tomRNFGMsyybNIXR8p7V0I3pR57e0G_C4nON_nm__NN-LsiL_Ztdn9y-aj4XSQMplK9g0iKHxn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1913377847</pqid></control><display><type>article</type><title>Orographic rainfall hot spots in the Andes‐Amazon transition according to the TRMM precipitation radar and in situ data</title><source>Wiley Online Library Free Content</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Chavez, Steven P. ; Takahashi, Ken</creator><creatorcontrib>Chavez, Steven P. ; Takahashi, Ken</creatorcontrib><description>The Andes‐Amazon transition, along the eastern Peruvian Andes, features “hot spots” with strong precipitation. Using 15 years of Tropical Rainfall Measuring Mission PR data we established a robust relation between terrain elevation and mean surface precipitation, with the latter peaking around 1000 m above sea level (asl), coinciding with the moisture flux peak of the South American Low Level Jet (SALLJ). There is strong diurnal variability, with afternoon (13–18 LT) convection in the Amazon plains, while on the eastern slopes (1000–2000 m asl), after the forcing associated with the thermal heating of the Andes subsides, convection grows during the night and surface precipitation peaks around 01–06 LT and organizes into mesoscale convective systems (MCSs). These then displace downslope to an terrain elevation of 700 m asl with stratiform regions spreading upslope and downslope and then decay during the remainder of the morning. The large MCSs contribute with at least 50% of daily rainfall (60% of the 01–06 LT rainfall). On synoptic scales, the large MCSs are more common in stronger SALLJ conditions, although subtropical cold surges are responsible for 16% of the cases. Key Points Robust relation found between precipitation and terrain elevation with a peak at ~1000 m asl coincident with the SALLJ moisture flux profile Mean precipitation depends strongly on the diurnal cycle and indicates nocturnal organization of storms into mesoscale convective systems Large precipitation features (MCS) are relatively rare but contribute at least 50% of the total precipitation on the eastern Andes</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2016JD026282</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Amazon ; Andes ; Atmospheric precipitations ; Cold surges ; Convection ; Convection heating ; Daily precipitation ; Data ; Decay ; Displacement ; Diurnal cycle ; Diurnal variations ; Elevation ; Flux ; Geophysics ; Heating ; Hot spots ; in situ measurements ; Loads (forces) ; Low level ; Low-level jets ; Mean precipitation ; Mesoscale convective systems ; Mesoscale phenomena ; Moisture ; Moisture flux ; Night ; Organizations ; orographic rainfall ; Plains ; Precipitation ; precipitation radar ; Radar ; Rain ; Rainfall ; Sea level ; Slope ; Spots ; Storms ; Surges ; Terrain ; TRMM ; Tropical climate ; Tropical rainfall ; Variability</subject><ispartof>Journal of geophysical research. Atmospheres, 2017-06, Vol.122 (11), p.5870-5882</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3508-4eba1cef49449612a23af7c435f186b084649d2f2b66992436f2184da8d159803</citedby><cites>FETCH-LOGICAL-c3508-4eba1cef49449612a23af7c435f186b084649d2f2b66992436f2184da8d159803</cites><orcidid>0000-0002-1591-0782 ; 0000-0003-3670-2939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016JD026282$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016JD026282$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1413,1429,27906,27907,45556,45557,46391,46815</link.rule.ids></links><search><creatorcontrib>Chavez, Steven P.</creatorcontrib><creatorcontrib>Takahashi, Ken</creatorcontrib><title>Orographic rainfall hot spots in the Andes‐Amazon transition according to the TRMM precipitation radar and in situ data</title><title>Journal of geophysical research. Atmospheres</title><description>The Andes‐Amazon transition, along the eastern Peruvian Andes, features “hot spots” with strong precipitation. Using 15 years of Tropical Rainfall Measuring Mission PR data we established a robust relation between terrain elevation and mean surface precipitation, with the latter peaking around 1000 m above sea level (asl), coinciding with the moisture flux peak of the South American Low Level Jet (SALLJ). There is strong diurnal variability, with afternoon (13–18 LT) convection in the Amazon plains, while on the eastern slopes (1000–2000 m asl), after the forcing associated with the thermal heating of the Andes subsides, convection grows during the night and surface precipitation peaks around 01–06 LT and organizes into mesoscale convective systems (MCSs). These then displace downslope to an terrain elevation of 700 m asl with stratiform regions spreading upslope and downslope and then decay during the remainder of the morning. The large MCSs contribute with at least 50% of daily rainfall (60% of the 01–06 LT rainfall). On synoptic scales, the large MCSs are more common in stronger SALLJ conditions, although subtropical cold surges are responsible for 16% of the cases. Key Points Robust relation found between precipitation and terrain elevation with a peak at ~1000 m asl coincident with the SALLJ moisture flux profile Mean precipitation depends strongly on the diurnal cycle and indicates nocturnal organization of storms into mesoscale convective systems Large precipitation features (MCS) are relatively rare but contribute at least 50% of the total precipitation on the eastern Andes</description><subject>Amazon</subject><subject>Andes</subject><subject>Atmospheric precipitations</subject><subject>Cold surges</subject><subject>Convection</subject><subject>Convection heating</subject><subject>Daily precipitation</subject><subject>Data</subject><subject>Decay</subject><subject>Displacement</subject><subject>Diurnal cycle</subject><subject>Diurnal variations</subject><subject>Elevation</subject><subject>Flux</subject><subject>Geophysics</subject><subject>Heating</subject><subject>Hot spots</subject><subject>in situ measurements</subject><subject>Loads (forces)</subject><subject>Low level</subject><subject>Low-level jets</subject><subject>Mean precipitation</subject><subject>Mesoscale convective systems</subject><subject>Mesoscale phenomena</subject><subject>Moisture</subject><subject>Moisture flux</subject><subject>Night</subject><subject>Organizations</subject><subject>orographic rainfall</subject><subject>Plains</subject><subject>Precipitation</subject><subject>precipitation radar</subject><subject>Radar</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Sea level</subject><subject>Slope</subject><subject>Spots</subject><subject>Storms</subject><subject>Surges</subject><subject>Terrain</subject><subject>TRMM</subject><subject>Tropical climate</subject><subject>Tropical rainfall</subject><subject>Variability</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OAjEQxjdGEwly8wGaeBXtv-22RwKKEogJwcTbZuh2oQS2a7vE4MlH8Bl9EgsY48m5zJfJb-bLfElySfANwZjeUkzEaICpoJKeJC1KhOpKpcTpr85ezpNOCCscS2LGU95Kdk_eLTzUS6uRB1uVsF6jpWtQqF0TkK1QszSoVxUmfH189jbw7uLIQxVsY6MErZ0vbLVAjTugs-lkgmpvtK1tAwfGQwEeQVXsz8W9LSqggYvkLJoF0_np7eT5_m7Wf-iOn4aP_d64q1mKZZebORBtSq44V4JQoAzKTHOWlkSKOZZccFXQks6FUIpyJkpKJC9AFiRV8c12cnW8W3v3ujWhyVdu66tomRNFGMsyybNIXR8p7V0I3pR57e0G_C4nON_nm__NN-LsiL_Ztdn9y-aj4XSQMplK9g0iKHxn</recordid><startdate>20170616</startdate><enddate>20170616</enddate><creator>Chavez, Steven P.</creator><creator>Takahashi, Ken</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1591-0782</orcidid><orcidid>https://orcid.org/0000-0003-3670-2939</orcidid></search><sort><creationdate>20170616</creationdate><title>Orographic rainfall hot spots in the Andes‐Amazon transition according to the TRMM precipitation radar and in situ data</title><author>Chavez, Steven P. ; Takahashi, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3508-4eba1cef49449612a23af7c435f186b084649d2f2b66992436f2184da8d159803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amazon</topic><topic>Andes</topic><topic>Atmospheric precipitations</topic><topic>Cold surges</topic><topic>Convection</topic><topic>Convection heating</topic><topic>Daily precipitation</topic><topic>Data</topic><topic>Decay</topic><topic>Displacement</topic><topic>Diurnal cycle</topic><topic>Diurnal variations</topic><topic>Elevation</topic><topic>Flux</topic><topic>Geophysics</topic><topic>Heating</topic><topic>Hot spots</topic><topic>in situ measurements</topic><topic>Loads (forces)</topic><topic>Low level</topic><topic>Low-level jets</topic><topic>Mean precipitation</topic><topic>Mesoscale convective systems</topic><topic>Mesoscale phenomena</topic><topic>Moisture</topic><topic>Moisture flux</topic><topic>Night</topic><topic>Organizations</topic><topic>orographic rainfall</topic><topic>Plains</topic><topic>Precipitation</topic><topic>precipitation radar</topic><topic>Radar</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Sea level</topic><topic>Slope</topic><topic>Spots</topic><topic>Storms</topic><topic>Surges</topic><topic>Terrain</topic><topic>TRMM</topic><topic>Tropical climate</topic><topic>Tropical rainfall</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chavez, Steven P.</creatorcontrib><creatorcontrib>Takahashi, Ken</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chavez, Steven P.</au><au>Takahashi, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orographic rainfall hot spots in the Andes‐Amazon transition according to the TRMM precipitation radar and in situ data</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2017-06-16</date><risdate>2017</risdate><volume>122</volume><issue>11</issue><spage>5870</spage><epage>5882</epage><pages>5870-5882</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>The Andes‐Amazon transition, along the eastern Peruvian Andes, features “hot spots” with strong precipitation. Using 15 years of Tropical Rainfall Measuring Mission PR data we established a robust relation between terrain elevation and mean surface precipitation, with the latter peaking around 1000 m above sea level (asl), coinciding with the moisture flux peak of the South American Low Level Jet (SALLJ). There is strong diurnal variability, with afternoon (13–18 LT) convection in the Amazon plains, while on the eastern slopes (1000–2000 m asl), after the forcing associated with the thermal heating of the Andes subsides, convection grows during the night and surface precipitation peaks around 01–06 LT and organizes into mesoscale convective systems (MCSs). These then displace downslope to an terrain elevation of 700 m asl with stratiform regions spreading upslope and downslope and then decay during the remainder of the morning. The large MCSs contribute with at least 50% of daily rainfall (60% of the 01–06 LT rainfall). On synoptic scales, the large MCSs are more common in stronger SALLJ conditions, although subtropical cold surges are responsible for 16% of the cases. Key Points Robust relation found between precipitation and terrain elevation with a peak at ~1000 m asl coincident with the SALLJ moisture flux profile Mean precipitation depends strongly on the diurnal cycle and indicates nocturnal organization of storms into mesoscale convective systems Large precipitation features (MCS) are relatively rare but contribute at least 50% of the total precipitation on the eastern Andes</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2016JD026282</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1591-0782</orcidid><orcidid>https://orcid.org/0000-0003-3670-2939</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2017-06, Vol.122 (11), p.5870-5882
issn 2169-897X
2169-8996
language eng
recordid cdi_proquest_journals_1913377847
source Wiley Online Library Free Content; Wiley Online Library All Journals; Alma/SFX Local Collection
subjects Amazon
Andes
Atmospheric precipitations
Cold surges
Convection
Convection heating
Daily precipitation
Data
Decay
Displacement
Diurnal cycle
Diurnal variations
Elevation
Flux
Geophysics
Heating
Hot spots
in situ measurements
Loads (forces)
Low level
Low-level jets
Mean precipitation
Mesoscale convective systems
Mesoscale phenomena
Moisture
Moisture flux
Night
Organizations
orographic rainfall
Plains
Precipitation
precipitation radar
Radar
Rain
Rainfall
Sea level
Slope
Spots
Storms
Surges
Terrain
TRMM
Tropical climate
Tropical rainfall
Variability
title Orographic rainfall hot spots in the Andes‐Amazon transition according to the TRMM precipitation radar and in situ data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A34%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orographic%20rainfall%20hot%20spots%20in%20the%20Andes%E2%80%90Amazon%20transition%20according%20to%20the%20TRMM%20precipitation%20radar%20and%20in%20situ%20data&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Chavez,%20Steven%20P.&rft.date=2017-06-16&rft.volume=122&rft.issue=11&rft.spage=5870&rft.epage=5882&rft.pages=5870-5882&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2016JD026282&rft_dat=%3Cproquest_cross%3E1913377847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1913377847&rft_id=info:pmid/&rfr_iscdi=true