Biofilm‐induced bioclogging produces sharp interfaces in hyporheic flow, redox conditions, and microbial community structure
Riverbed sediments host important biogeochemical processes that play a key role in nutrient dynamics. Sedimentary nutrient transformations are mediated by bacteria in the form of attached biofilms. The influence of microbial metabolic activity on the hydrochemical conditions within the hyporheic zon...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2017-05, Vol.44 (10), p.4917-4925 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4925 |
---|---|
container_issue | 10 |
container_start_page | 4917 |
container_title | Geophysical research letters |
container_volume | 44 |
creator | Caruso, Alice Boano, Fulvio Ridolfi, Luca Chopp, David L. Packman, Aaron |
description | Riverbed sediments host important biogeochemical processes that play a key role in nutrient dynamics. Sedimentary nutrient transformations are mediated by bacteria in the form of attached biofilms. The influence of microbial metabolic activity on the hydrochemical conditions within the hyporheic zone is poorly understood. We present a hydrobiogeochemical model to assess how the growth of heterotrophic and autotrophic biomass affects the transport and transformation of dissolved nitrogen compounds in bed form‐induced hyporheic zones. Coupling between hyporheic exchange, nitrogen metabolism, and biomass growth leads to an equilibrium between permeability reduction and microbial metabolism that yields shallow hyporheic flows in a region with low permeability and high rates of microbial metabolism near the stream‐sediment interface. The results show that the bioclogging caused by microbial growth can constrain rates and patterns of hyporheic fluxes and microbial transformation rate in many streams.
Key Points
Biofilm‐induced bioclogging strongly regulates hyporheic pore water flow and microbial transformation rates
Bioclogging is primarily induced by growth of heterotrophic bacteria within pore space
Feedbacks associated with microbial metabolism and growth generate sharp fronts in hyporheic flow, redox conditions, and microbial biomass |
doi_str_mv | 10.1002/2017GL073651 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1913032852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1913032852</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2824-6da705f334ee834d328acac80a48855194ad442146daa73d4aa2ea7e7a506bd03</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWKs3HyDgtdXJn_131KJVKAii52W6ybYpu0lNdtG9iI_gM_okptSDJ08zfPNjZr6PkHMGlwyAX3Fg2XwBmUgTdkBGrJBymgNkh2QEUMSeZ-kxOQlhAwACBBuRjxvjatO0359fxqq-0ooujasat1oZu6Jb73ZioGGNfkuN7bSvcScYS9fD1vm1NhWtG_c2oV4r904rZ5XpjLNhQtEq2prKu6XBJk7atremG2jofF91vden5KjGJuiz3zomL3e3z7P76eJx_jC7XkyR51xOU4UZJLUQUutcSCV4jhVWOaDM8ySJRlFJyZmMIGZCSUSuMdMZJpAuFYgxudjvjYZeex26cuN6b-PJkhUsRsHzhEdqsqfixyF4XZdbb1r0Q8mg3CVc_k044nyPv5lGD_-y5fxpkSSFkOIHsQd_yg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1913032852</pqid></control><display><type>article</type><title>Biofilm‐induced bioclogging produces sharp interfaces in hyporheic flow, redox conditions, and microbial community structure</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Caruso, Alice ; Boano, Fulvio ; Ridolfi, Luca ; Chopp, David L. ; Packman, Aaron</creator><creatorcontrib>Caruso, Alice ; Boano, Fulvio ; Ridolfi, Luca ; Chopp, David L. ; Packman, Aaron</creatorcontrib><description>Riverbed sediments host important biogeochemical processes that play a key role in nutrient dynamics. Sedimentary nutrient transformations are mediated by bacteria in the form of attached biofilms. The influence of microbial metabolic activity on the hydrochemical conditions within the hyporheic zone is poorly understood. We present a hydrobiogeochemical model to assess how the growth of heterotrophic and autotrophic biomass affects the transport and transformation of dissolved nitrogen compounds in bed form‐induced hyporheic zones. Coupling between hyporheic exchange, nitrogen metabolism, and biomass growth leads to an equilibrium between permeability reduction and microbial metabolism that yields shallow hyporheic flows in a region with low permeability and high rates of microbial metabolism near the stream‐sediment interface. The results show that the bioclogging caused by microbial growth can constrain rates and patterns of hyporheic fluxes and microbial transformation rate in many streams.
Key Points
Biofilm‐induced bioclogging strongly regulates hyporheic pore water flow and microbial transformation rates
Bioclogging is primarily induced by growth of heterotrophic bacteria within pore space
Feedbacks associated with microbial metabolism and growth generate sharp fronts in hyporheic flow, redox conditions, and microbial biomass</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2017GL073651</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Bacteria ; bioclogging ; Biofilms ; Biogeochemistry ; Biomass ; Communities ; Community structure ; Coupling (molecular) ; Dynamics ; Exchanging ; Fluxes ; Growth ; hyporheic exchange ; Hyporheic zone ; Hyporheic zones ; Interfaces ; Metabolism ; Microorganisms ; Mineral nutrients ; Nitrogen ; Nitrogen compounds ; Nitrogen metabolism ; Nutrient dynamics ; Oxidoreductions ; Permeability ; River beds ; Riverbeds ; Rivers ; Sediment ; Sedimentary structures ; Sediments ; Streams ; Transport</subject><ispartof>Geophysical research letters, 2017-05, Vol.44 (10), p.4917-4925</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2824-6da705f334ee834d328acac80a48855194ad442146daa73d4aa2ea7e7a506bd03</citedby><cites>FETCH-LOGICAL-a2824-6da705f334ee834d328acac80a48855194ad442146daa73d4aa2ea7e7a506bd03</cites><orcidid>0000-0003-4270-6426 ; 0000-0002-8458-858X ; 0000-0003-2947-8641 ; 0000-0003-3172-4549 ; 0000-0003-4785-3126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017GL073651$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017GL073651$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,1435,11523,27933,27934,45583,45584,46418,46477,46842,46901</link.rule.ids></links><search><creatorcontrib>Caruso, Alice</creatorcontrib><creatorcontrib>Boano, Fulvio</creatorcontrib><creatorcontrib>Ridolfi, Luca</creatorcontrib><creatorcontrib>Chopp, David L.</creatorcontrib><creatorcontrib>Packman, Aaron</creatorcontrib><title>Biofilm‐induced bioclogging produces sharp interfaces in hyporheic flow, redox conditions, and microbial community structure</title><title>Geophysical research letters</title><description>Riverbed sediments host important biogeochemical processes that play a key role in nutrient dynamics. Sedimentary nutrient transformations are mediated by bacteria in the form of attached biofilms. The influence of microbial metabolic activity on the hydrochemical conditions within the hyporheic zone is poorly understood. We present a hydrobiogeochemical model to assess how the growth of heterotrophic and autotrophic biomass affects the transport and transformation of dissolved nitrogen compounds in bed form‐induced hyporheic zones. Coupling between hyporheic exchange, nitrogen metabolism, and biomass growth leads to an equilibrium between permeability reduction and microbial metabolism that yields shallow hyporheic flows in a region with low permeability and high rates of microbial metabolism near the stream‐sediment interface. The results show that the bioclogging caused by microbial growth can constrain rates and patterns of hyporheic fluxes and microbial transformation rate in many streams.
Key Points
Biofilm‐induced bioclogging strongly regulates hyporheic pore water flow and microbial transformation rates
Bioclogging is primarily induced by growth of heterotrophic bacteria within pore space
Feedbacks associated with microbial metabolism and growth generate sharp fronts in hyporheic flow, redox conditions, and microbial biomass</description><subject>Bacteria</subject><subject>bioclogging</subject><subject>Biofilms</subject><subject>Biogeochemistry</subject><subject>Biomass</subject><subject>Communities</subject><subject>Community structure</subject><subject>Coupling (molecular)</subject><subject>Dynamics</subject><subject>Exchanging</subject><subject>Fluxes</subject><subject>Growth</subject><subject>hyporheic exchange</subject><subject>Hyporheic zone</subject><subject>Hyporheic zones</subject><subject>Interfaces</subject><subject>Metabolism</subject><subject>Microorganisms</subject><subject>Mineral nutrients</subject><subject>Nitrogen</subject><subject>Nitrogen compounds</subject><subject>Nitrogen metabolism</subject><subject>Nutrient dynamics</subject><subject>Oxidoreductions</subject><subject>Permeability</subject><subject>River beds</subject><subject>Riverbeds</subject><subject>Rivers</subject><subject>Sediment</subject><subject>Sedimentary structures</subject><subject>Sediments</subject><subject>Streams</subject><subject>Transport</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMoWKs3HyDgtdXJn_131KJVKAii52W6ybYpu0lNdtG9iI_gM_okptSDJ08zfPNjZr6PkHMGlwyAX3Fg2XwBmUgTdkBGrJBymgNkh2QEUMSeZ-kxOQlhAwACBBuRjxvjatO0359fxqq-0ooujasat1oZu6Jb73ZioGGNfkuN7bSvcScYS9fD1vm1NhWtG_c2oV4r904rZ5XpjLNhQtEq2prKu6XBJk7atremG2jofF91vden5KjGJuiz3zomL3e3z7P76eJx_jC7XkyR51xOU4UZJLUQUutcSCV4jhVWOaDM8ySJRlFJyZmMIGZCSUSuMdMZJpAuFYgxudjvjYZeex26cuN6b-PJkhUsRsHzhEdqsqfixyF4XZdbb1r0Q8mg3CVc_k044nyPv5lGD_-y5fxpkSSFkOIHsQd_yg</recordid><startdate>20170528</startdate><enddate>20170528</enddate><creator>Caruso, Alice</creator><creator>Boano, Fulvio</creator><creator>Ridolfi, Luca</creator><creator>Chopp, David L.</creator><creator>Packman, Aaron</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4270-6426</orcidid><orcidid>https://orcid.org/0000-0002-8458-858X</orcidid><orcidid>https://orcid.org/0000-0003-2947-8641</orcidid><orcidid>https://orcid.org/0000-0003-3172-4549</orcidid><orcidid>https://orcid.org/0000-0003-4785-3126</orcidid></search><sort><creationdate>20170528</creationdate><title>Biofilm‐induced bioclogging produces sharp interfaces in hyporheic flow, redox conditions, and microbial community structure</title><author>Caruso, Alice ; Boano, Fulvio ; Ridolfi, Luca ; Chopp, David L. ; Packman, Aaron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2824-6da705f334ee834d328acac80a48855194ad442146daa73d4aa2ea7e7a506bd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacteria</topic><topic>bioclogging</topic><topic>Biofilms</topic><topic>Biogeochemistry</topic><topic>Biomass</topic><topic>Communities</topic><topic>Community structure</topic><topic>Coupling (molecular)</topic><topic>Dynamics</topic><topic>Exchanging</topic><topic>Fluxes</topic><topic>Growth</topic><topic>hyporheic exchange</topic><topic>Hyporheic zone</topic><topic>Hyporheic zones</topic><topic>Interfaces</topic><topic>Metabolism</topic><topic>Microorganisms</topic><topic>Mineral nutrients</topic><topic>Nitrogen</topic><topic>Nitrogen compounds</topic><topic>Nitrogen metabolism</topic><topic>Nutrient dynamics</topic><topic>Oxidoreductions</topic><topic>Permeability</topic><topic>River beds</topic><topic>Riverbeds</topic><topic>Rivers</topic><topic>Sediment</topic><topic>Sedimentary structures</topic><topic>Sediments</topic><topic>Streams</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caruso, Alice</creatorcontrib><creatorcontrib>Boano, Fulvio</creatorcontrib><creatorcontrib>Ridolfi, Luca</creatorcontrib><creatorcontrib>Chopp, David L.</creatorcontrib><creatorcontrib>Packman, Aaron</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caruso, Alice</au><au>Boano, Fulvio</au><au>Ridolfi, Luca</au><au>Chopp, David L.</au><au>Packman, Aaron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biofilm‐induced bioclogging produces sharp interfaces in hyporheic flow, redox conditions, and microbial community structure</atitle><jtitle>Geophysical research letters</jtitle><date>2017-05-28</date><risdate>2017</risdate><volume>44</volume><issue>10</issue><spage>4917</spage><epage>4925</epage><pages>4917-4925</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Riverbed sediments host important biogeochemical processes that play a key role in nutrient dynamics. Sedimentary nutrient transformations are mediated by bacteria in the form of attached biofilms. The influence of microbial metabolic activity on the hydrochemical conditions within the hyporheic zone is poorly understood. We present a hydrobiogeochemical model to assess how the growth of heterotrophic and autotrophic biomass affects the transport and transformation of dissolved nitrogen compounds in bed form‐induced hyporheic zones. Coupling between hyporheic exchange, nitrogen metabolism, and biomass growth leads to an equilibrium between permeability reduction and microbial metabolism that yields shallow hyporheic flows in a region with low permeability and high rates of microbial metabolism near the stream‐sediment interface. The results show that the bioclogging caused by microbial growth can constrain rates and patterns of hyporheic fluxes and microbial transformation rate in many streams.
Key Points
Biofilm‐induced bioclogging strongly regulates hyporheic pore water flow and microbial transformation rates
Bioclogging is primarily induced by growth of heterotrophic bacteria within pore space
Feedbacks associated with microbial metabolism and growth generate sharp fronts in hyporheic flow, redox conditions, and microbial biomass</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/2017GL073651</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4270-6426</orcidid><orcidid>https://orcid.org/0000-0002-8458-858X</orcidid><orcidid>https://orcid.org/0000-0003-2947-8641</orcidid><orcidid>https://orcid.org/0000-0003-3172-4549</orcidid><orcidid>https://orcid.org/0000-0003-4785-3126</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2017-05, Vol.44 (10), p.4917-4925 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_journals_1913032852 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; Wiley Online Library (Open Access Collection) |
subjects | Bacteria bioclogging Biofilms Biogeochemistry Biomass Communities Community structure Coupling (molecular) Dynamics Exchanging Fluxes Growth hyporheic exchange Hyporheic zone Hyporheic zones Interfaces Metabolism Microorganisms Mineral nutrients Nitrogen Nitrogen compounds Nitrogen metabolism Nutrient dynamics Oxidoreductions Permeability River beds Riverbeds Rivers Sediment Sedimentary structures Sediments Streams Transport |
title | Biofilm‐induced bioclogging produces sharp interfaces in hyporheic flow, redox conditions, and microbial community structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T06%3A43%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biofilm%E2%80%90induced%20bioclogging%20produces%20sharp%20interfaces%20in%20hyporheic%20flow,%20redox%20conditions,%20and%20microbial%20community%20structure&rft.jtitle=Geophysical%20research%20letters&rft.au=Caruso,%20Alice&rft.date=2017-05-28&rft.volume=44&rft.issue=10&rft.spage=4917&rft.epage=4925&rft.pages=4917-4925&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2017GL073651&rft_dat=%3Cproquest_cross%3E1913032852%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1913032852&rft_id=info:pmid/&rfr_iscdi=true |