Biofilm‐induced bioclogging produces sharp interfaces in hyporheic flow, redox conditions, and microbial community structure

Riverbed sediments host important biogeochemical processes that play a key role in nutrient dynamics. Sedimentary nutrient transformations are mediated by bacteria in the form of attached biofilms. The influence of microbial metabolic activity on the hydrochemical conditions within the hyporheic zon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2017-05, Vol.44 (10), p.4917-4925
Hauptverfasser: Caruso, Alice, Boano, Fulvio, Ridolfi, Luca, Chopp, David L., Packman, Aaron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4925
container_issue 10
container_start_page 4917
container_title Geophysical research letters
container_volume 44
creator Caruso, Alice
Boano, Fulvio
Ridolfi, Luca
Chopp, David L.
Packman, Aaron
description Riverbed sediments host important biogeochemical processes that play a key role in nutrient dynamics. Sedimentary nutrient transformations are mediated by bacteria in the form of attached biofilms. The influence of microbial metabolic activity on the hydrochemical conditions within the hyporheic zone is poorly understood. We present a hydrobiogeochemical model to assess how the growth of heterotrophic and autotrophic biomass affects the transport and transformation of dissolved nitrogen compounds in bed form‐induced hyporheic zones. Coupling between hyporheic exchange, nitrogen metabolism, and biomass growth leads to an equilibrium between permeability reduction and microbial metabolism that yields shallow hyporheic flows in a region with low permeability and high rates of microbial metabolism near the stream‐sediment interface. The results show that the bioclogging caused by microbial growth can constrain rates and patterns of hyporheic fluxes and microbial transformation rate in many streams. Key Points Biofilm‐induced bioclogging strongly regulates hyporheic pore water flow and microbial transformation rates Bioclogging is primarily induced by growth of heterotrophic bacteria within pore space Feedbacks associated with microbial metabolism and growth generate sharp fronts in hyporheic flow, redox conditions, and microbial biomass
doi_str_mv 10.1002/2017GL073651
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1913032852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1913032852</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2824-6da705f334ee834d328acac80a48855194ad442146daa73d4aa2ea7e7a506bd03</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWKs3HyDgtdXJn_131KJVKAii52W6ybYpu0lNdtG9iI_gM_okptSDJ08zfPNjZr6PkHMGlwyAX3Fg2XwBmUgTdkBGrJBymgNkh2QEUMSeZ-kxOQlhAwACBBuRjxvjatO0359fxqq-0ooujasat1oZu6Jb73ZioGGNfkuN7bSvcScYS9fD1vm1NhWtG_c2oV4r904rZ5XpjLNhQtEq2prKu6XBJk7atremG2jofF91vden5KjGJuiz3zomL3e3z7P76eJx_jC7XkyR51xOU4UZJLUQUutcSCV4jhVWOaDM8ySJRlFJyZmMIGZCSUSuMdMZJpAuFYgxudjvjYZeex26cuN6b-PJkhUsRsHzhEdqsqfixyF4XZdbb1r0Q8mg3CVc_k044nyPv5lGD_-y5fxpkSSFkOIHsQd_yg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1913032852</pqid></control><display><type>article</type><title>Biofilm‐induced bioclogging produces sharp interfaces in hyporheic flow, redox conditions, and microbial community structure</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Caruso, Alice ; Boano, Fulvio ; Ridolfi, Luca ; Chopp, David L. ; Packman, Aaron</creator><creatorcontrib>Caruso, Alice ; Boano, Fulvio ; Ridolfi, Luca ; Chopp, David L. ; Packman, Aaron</creatorcontrib><description>Riverbed sediments host important biogeochemical processes that play a key role in nutrient dynamics. Sedimentary nutrient transformations are mediated by bacteria in the form of attached biofilms. The influence of microbial metabolic activity on the hydrochemical conditions within the hyporheic zone is poorly understood. We present a hydrobiogeochemical model to assess how the growth of heterotrophic and autotrophic biomass affects the transport and transformation of dissolved nitrogen compounds in bed form‐induced hyporheic zones. Coupling between hyporheic exchange, nitrogen metabolism, and biomass growth leads to an equilibrium between permeability reduction and microbial metabolism that yields shallow hyporheic flows in a region with low permeability and high rates of microbial metabolism near the stream‐sediment interface. The results show that the bioclogging caused by microbial growth can constrain rates and patterns of hyporheic fluxes and microbial transformation rate in many streams. Key Points Biofilm‐induced bioclogging strongly regulates hyporheic pore water flow and microbial transformation rates Bioclogging is primarily induced by growth of heterotrophic bacteria within pore space Feedbacks associated with microbial metabolism and growth generate sharp fronts in hyporheic flow, redox conditions, and microbial biomass</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2017GL073651</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Bacteria ; bioclogging ; Biofilms ; Biogeochemistry ; Biomass ; Communities ; Community structure ; Coupling (molecular) ; Dynamics ; Exchanging ; Fluxes ; Growth ; hyporheic exchange ; Hyporheic zone ; Hyporheic zones ; Interfaces ; Metabolism ; Microorganisms ; Mineral nutrients ; Nitrogen ; Nitrogen compounds ; Nitrogen metabolism ; Nutrient dynamics ; Oxidoreductions ; Permeability ; River beds ; Riverbeds ; Rivers ; Sediment ; Sedimentary structures ; Sediments ; Streams ; Transport</subject><ispartof>Geophysical research letters, 2017-05, Vol.44 (10), p.4917-4925</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2824-6da705f334ee834d328acac80a48855194ad442146daa73d4aa2ea7e7a506bd03</citedby><cites>FETCH-LOGICAL-a2824-6da705f334ee834d328acac80a48855194ad442146daa73d4aa2ea7e7a506bd03</cites><orcidid>0000-0003-4270-6426 ; 0000-0002-8458-858X ; 0000-0003-2947-8641 ; 0000-0003-3172-4549 ; 0000-0003-4785-3126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017GL073651$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017GL073651$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,1435,11523,27933,27934,45583,45584,46418,46477,46842,46901</link.rule.ids></links><search><creatorcontrib>Caruso, Alice</creatorcontrib><creatorcontrib>Boano, Fulvio</creatorcontrib><creatorcontrib>Ridolfi, Luca</creatorcontrib><creatorcontrib>Chopp, David L.</creatorcontrib><creatorcontrib>Packman, Aaron</creatorcontrib><title>Biofilm‐induced bioclogging produces sharp interfaces in hyporheic flow, redox conditions, and microbial community structure</title><title>Geophysical research letters</title><description>Riverbed sediments host important biogeochemical processes that play a key role in nutrient dynamics. Sedimentary nutrient transformations are mediated by bacteria in the form of attached biofilms. The influence of microbial metabolic activity on the hydrochemical conditions within the hyporheic zone is poorly understood. We present a hydrobiogeochemical model to assess how the growth of heterotrophic and autotrophic biomass affects the transport and transformation of dissolved nitrogen compounds in bed form‐induced hyporheic zones. Coupling between hyporheic exchange, nitrogen metabolism, and biomass growth leads to an equilibrium between permeability reduction and microbial metabolism that yields shallow hyporheic flows in a region with low permeability and high rates of microbial metabolism near the stream‐sediment interface. The results show that the bioclogging caused by microbial growth can constrain rates and patterns of hyporheic fluxes and microbial transformation rate in many streams. Key Points Biofilm‐induced bioclogging strongly regulates hyporheic pore water flow and microbial transformation rates Bioclogging is primarily induced by growth of heterotrophic bacteria within pore space Feedbacks associated with microbial metabolism and growth generate sharp fronts in hyporheic flow, redox conditions, and microbial biomass</description><subject>Bacteria</subject><subject>bioclogging</subject><subject>Biofilms</subject><subject>Biogeochemistry</subject><subject>Biomass</subject><subject>Communities</subject><subject>Community structure</subject><subject>Coupling (molecular)</subject><subject>Dynamics</subject><subject>Exchanging</subject><subject>Fluxes</subject><subject>Growth</subject><subject>hyporheic exchange</subject><subject>Hyporheic zone</subject><subject>Hyporheic zones</subject><subject>Interfaces</subject><subject>Metabolism</subject><subject>Microorganisms</subject><subject>Mineral nutrients</subject><subject>Nitrogen</subject><subject>Nitrogen compounds</subject><subject>Nitrogen metabolism</subject><subject>Nutrient dynamics</subject><subject>Oxidoreductions</subject><subject>Permeability</subject><subject>River beds</subject><subject>Riverbeds</subject><subject>Rivers</subject><subject>Sediment</subject><subject>Sedimentary structures</subject><subject>Sediments</subject><subject>Streams</subject><subject>Transport</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMoWKs3HyDgtdXJn_131KJVKAii52W6ybYpu0lNdtG9iI_gM_okptSDJ08zfPNjZr6PkHMGlwyAX3Fg2XwBmUgTdkBGrJBymgNkh2QEUMSeZ-kxOQlhAwACBBuRjxvjatO0359fxqq-0ooujasat1oZu6Jb73ZioGGNfkuN7bSvcScYS9fD1vm1NhWtG_c2oV4r904rZ5XpjLNhQtEq2prKu6XBJk7atremG2jofF91vden5KjGJuiz3zomL3e3z7P76eJx_jC7XkyR51xOU4UZJLUQUutcSCV4jhVWOaDM8ySJRlFJyZmMIGZCSUSuMdMZJpAuFYgxudjvjYZeex26cuN6b-PJkhUsRsHzhEdqsqfixyF4XZdbb1r0Q8mg3CVc_k044nyPv5lGD_-y5fxpkSSFkOIHsQd_yg</recordid><startdate>20170528</startdate><enddate>20170528</enddate><creator>Caruso, Alice</creator><creator>Boano, Fulvio</creator><creator>Ridolfi, Luca</creator><creator>Chopp, David L.</creator><creator>Packman, Aaron</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4270-6426</orcidid><orcidid>https://orcid.org/0000-0002-8458-858X</orcidid><orcidid>https://orcid.org/0000-0003-2947-8641</orcidid><orcidid>https://orcid.org/0000-0003-3172-4549</orcidid><orcidid>https://orcid.org/0000-0003-4785-3126</orcidid></search><sort><creationdate>20170528</creationdate><title>Biofilm‐induced bioclogging produces sharp interfaces in hyporheic flow, redox conditions, and microbial community structure</title><author>Caruso, Alice ; Boano, Fulvio ; Ridolfi, Luca ; Chopp, David L. ; Packman, Aaron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2824-6da705f334ee834d328acac80a48855194ad442146daa73d4aa2ea7e7a506bd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacteria</topic><topic>bioclogging</topic><topic>Biofilms</topic><topic>Biogeochemistry</topic><topic>Biomass</topic><topic>Communities</topic><topic>Community structure</topic><topic>Coupling (molecular)</topic><topic>Dynamics</topic><topic>Exchanging</topic><topic>Fluxes</topic><topic>Growth</topic><topic>hyporheic exchange</topic><topic>Hyporheic zone</topic><topic>Hyporheic zones</topic><topic>Interfaces</topic><topic>Metabolism</topic><topic>Microorganisms</topic><topic>Mineral nutrients</topic><topic>Nitrogen</topic><topic>Nitrogen compounds</topic><topic>Nitrogen metabolism</topic><topic>Nutrient dynamics</topic><topic>Oxidoreductions</topic><topic>Permeability</topic><topic>River beds</topic><topic>Riverbeds</topic><topic>Rivers</topic><topic>Sediment</topic><topic>Sedimentary structures</topic><topic>Sediments</topic><topic>Streams</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caruso, Alice</creatorcontrib><creatorcontrib>Boano, Fulvio</creatorcontrib><creatorcontrib>Ridolfi, Luca</creatorcontrib><creatorcontrib>Chopp, David L.</creatorcontrib><creatorcontrib>Packman, Aaron</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caruso, Alice</au><au>Boano, Fulvio</au><au>Ridolfi, Luca</au><au>Chopp, David L.</au><au>Packman, Aaron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biofilm‐induced bioclogging produces sharp interfaces in hyporheic flow, redox conditions, and microbial community structure</atitle><jtitle>Geophysical research letters</jtitle><date>2017-05-28</date><risdate>2017</risdate><volume>44</volume><issue>10</issue><spage>4917</spage><epage>4925</epage><pages>4917-4925</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Riverbed sediments host important biogeochemical processes that play a key role in nutrient dynamics. Sedimentary nutrient transformations are mediated by bacteria in the form of attached biofilms. The influence of microbial metabolic activity on the hydrochemical conditions within the hyporheic zone is poorly understood. We present a hydrobiogeochemical model to assess how the growth of heterotrophic and autotrophic biomass affects the transport and transformation of dissolved nitrogen compounds in bed form‐induced hyporheic zones. Coupling between hyporheic exchange, nitrogen metabolism, and biomass growth leads to an equilibrium between permeability reduction and microbial metabolism that yields shallow hyporheic flows in a region with low permeability and high rates of microbial metabolism near the stream‐sediment interface. The results show that the bioclogging caused by microbial growth can constrain rates and patterns of hyporheic fluxes and microbial transformation rate in many streams. Key Points Biofilm‐induced bioclogging strongly regulates hyporheic pore water flow and microbial transformation rates Bioclogging is primarily induced by growth of heterotrophic bacteria within pore space Feedbacks associated with microbial metabolism and growth generate sharp fronts in hyporheic flow, redox conditions, and microbial biomass</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2017GL073651</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4270-6426</orcidid><orcidid>https://orcid.org/0000-0002-8458-858X</orcidid><orcidid>https://orcid.org/0000-0003-2947-8641</orcidid><orcidid>https://orcid.org/0000-0003-3172-4549</orcidid><orcidid>https://orcid.org/0000-0003-4785-3126</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2017-05, Vol.44 (10), p.4917-4925
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_1913032852
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; Wiley Online Library (Open Access Collection)
subjects Bacteria
bioclogging
Biofilms
Biogeochemistry
Biomass
Communities
Community structure
Coupling (molecular)
Dynamics
Exchanging
Fluxes
Growth
hyporheic exchange
Hyporheic zone
Hyporheic zones
Interfaces
Metabolism
Microorganisms
Mineral nutrients
Nitrogen
Nitrogen compounds
Nitrogen metabolism
Nutrient dynamics
Oxidoreductions
Permeability
River beds
Riverbeds
Rivers
Sediment
Sedimentary structures
Sediments
Streams
Transport
title Biofilm‐induced bioclogging produces sharp interfaces in hyporheic flow, redox conditions, and microbial community structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T06%3A43%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biofilm%E2%80%90induced%20bioclogging%20produces%20sharp%20interfaces%20in%20hyporheic%20flow,%20redox%20conditions,%20and%20microbial%20community%20structure&rft.jtitle=Geophysical%20research%20letters&rft.au=Caruso,%20Alice&rft.date=2017-05-28&rft.volume=44&rft.issue=10&rft.spage=4917&rft.epage=4925&rft.pages=4917-4925&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2017GL073651&rft_dat=%3Cproquest_cross%3E1913032852%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1913032852&rft_id=info:pmid/&rfr_iscdi=true