Large CO2 and CH4 emissions from polygonal tundra during spring thaw in northern Alaska

The few prethaw observations of tundra carbon fluxes suggest that there may be large spring releases, but little is known about the scale and underlying mechanisms of this phenomenon. To address these questions, we combined ecosystem eddy flux measurements from two towers near Barrow, Alaska, with m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2017-01, Vol.44 (1), p.504-513
Hauptverfasser: Raz‐Yaseef, Naama, Torn, Margaret S., Wu, Yuxin, Billesbach, Dave P., Liljedahl, Anna K., Kneafsey, Timothy J., Romanovsky, Vladimir E., Cook, David R., Wullschleger, Stan D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 513
container_issue 1
container_start_page 504
container_title Geophysical research letters
container_volume 44
creator Raz‐Yaseef, Naama
Torn, Margaret S.
Wu, Yuxin
Billesbach, Dave P.
Liljedahl, Anna K.
Kneafsey, Timothy J.
Romanovsky, Vladimir E.
Cook, David R.
Wullschleger, Stan D.
description The few prethaw observations of tundra carbon fluxes suggest that there may be large spring releases, but little is known about the scale and underlying mechanisms of this phenomenon. To address these questions, we combined ecosystem eddy flux measurements from two towers near Barrow, Alaska, with mechanistic soil‐core thawing experiment. During a 2 week period prior to snowmelt in 2014, large fluxes were measured, reducing net summer uptake of CO2 by 46% and adding 6% to cumulative CH4 emissions. Emission pulses were linked to unique rain‐on‐snow events enhancing soil cracking. Controlled laboratory experiment revealed that as surface ice thaws, an immediate, large pulse of trapped gases is emitted. These results suggest that the Arctic CO2 and CH4 spring pulse is a delayed release of biogenic gas production from the previous fall and that the pulse can be large enough to offset a significant fraction of the moderate Arctic tundra carbon sink. Key Points Prethaw carbon flux pulses during thaw offset 46% of CO2 summer uptake and added 6% to CH4 summer fluxes Laboratory experiment linked pulse emissions to a delayed microbial production mechanism The spring pulse may be a large underrepresented source of carbon in Arctic regions
doi_str_mv 10.1002/2016GL071220
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1912988316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1912988316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4018-21cd606ead806193275088533d3c34db18b73cf82e65cc6c6be803e7551ce3253</originalsourceid><addsrcrecordid>eNp9kEFLw0AUhBdRsFZv_oAFz9H39mU3m2MJ2gqBgigew3azbVPTTd1NKP33turBk6eZw_AxM4zdItwjgHgQgGpaQoZCwBkbYZ6miQbIztkIID96kalLdhXjBgAICEfsvTRh5XgxF9z4mhezlLttE2PT-ciXodvyXdceVp03Le8HXwfD6yE0fsXj7lv6tdnzxnPfhX7tgueT1sQPc80ulqaN7uZXx-zt6fG1mCXlfPpcTMrEpoA6EWhrBcqZWoPCnEQmQWtJVJOltF6gXmRkl1o4Ja1VVi2cBnKZlGgdCUljdvfD3YXuc3CxrzbdEI5tY4U5ilxrQvVvSitBlII-scRPat-07lAd921NOFQI1end6u-71fSllJJQ0xfxo2ts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862334085</pqid></control><display><type>article</type><title>Large CO2 and CH4 emissions from polygonal tundra during spring thaw in northern Alaska</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Wiley Online Library Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Raz‐Yaseef, Naama ; Torn, Margaret S. ; Wu, Yuxin ; Billesbach, Dave P. ; Liljedahl, Anna K. ; Kneafsey, Timothy J. ; Romanovsky, Vladimir E. ; Cook, David R. ; Wullschleger, Stan D.</creator><creatorcontrib>Raz‐Yaseef, Naama ; Torn, Margaret S. ; Wu, Yuxin ; Billesbach, Dave P. ; Liljedahl, Anna K. ; Kneafsey, Timothy J. ; Romanovsky, Vladimir E. ; Cook, David R. ; Wullschleger, Stan D.</creatorcontrib><description>The few prethaw observations of tundra carbon fluxes suggest that there may be large spring releases, but little is known about the scale and underlying mechanisms of this phenomenon. To address these questions, we combined ecosystem eddy flux measurements from two towers near Barrow, Alaska, with mechanistic soil‐core thawing experiment. During a 2 week period prior to snowmelt in 2014, large fluxes were measured, reducing net summer uptake of CO2 by 46% and adding 6% to cumulative CH4 emissions. Emission pulses were linked to unique rain‐on‐snow events enhancing soil cracking. Controlled laboratory experiment revealed that as surface ice thaws, an immediate, large pulse of trapped gases is emitted. These results suggest that the Arctic CO2 and CH4 spring pulse is a delayed release of biogenic gas production from the previous fall and that the pulse can be large enough to offset a significant fraction of the moderate Arctic tundra carbon sink. Key Points Prethaw carbon flux pulses during thaw offset 46% of CO2 summer uptake and added 6% to CH4 summer fluxes Laboratory experiment linked pulse emissions to a delayed microbial production mechanism The spring pulse may be a large underrepresented source of carbon in Arctic regions</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2016GL071220</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Arctic ; Atmospheric precipitations ; Carbon ; Carbon dioxide ; carbon fluxes ; Carbon sinks ; Cracking (corrosion) ; eddy covariance ; Eddy flux ; Eddy flux measurements ; Emissions ; Emissions control ; Experiments ; Fluxes ; Gas production ; Gases ; Ice ; Laboratories ; Melting ; Methane ; Oil and gas production ; pulse ; Rain ; Snow ; Snowmelt ; Soil ; Spring ; Spring (season) ; Summer ; Taiga &amp; tundra ; thaw ; Thawing ; Thaws ; Towers ; Tundra ; Uptake ; Vortices</subject><ispartof>Geophysical research letters, 2017-01, Vol.44 (1), p.504-513</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4018-21cd606ead806193275088533d3c34db18b73cf82e65cc6c6be803e7551ce3253</citedby><orcidid>0000-0002-9515-2087 ; 0000-0003-3645-7590 ; 0000-0001-8661-9178 ; 0000-0002-9869-0446 ; 0000-0002-8174-0099 ; 0000-0002-7405-1607 ; 0000-0002-6953-0179 ; 0000-0001-7114-6443 ; 0000-0002-3926-8587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016GL071220$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016GL071220$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11494,27903,27904,45553,45554,46387,46446,46811,46870</link.rule.ids></links><search><creatorcontrib>Raz‐Yaseef, Naama</creatorcontrib><creatorcontrib>Torn, Margaret S.</creatorcontrib><creatorcontrib>Wu, Yuxin</creatorcontrib><creatorcontrib>Billesbach, Dave P.</creatorcontrib><creatorcontrib>Liljedahl, Anna K.</creatorcontrib><creatorcontrib>Kneafsey, Timothy J.</creatorcontrib><creatorcontrib>Romanovsky, Vladimir E.</creatorcontrib><creatorcontrib>Cook, David R.</creatorcontrib><creatorcontrib>Wullschleger, Stan D.</creatorcontrib><title>Large CO2 and CH4 emissions from polygonal tundra during spring thaw in northern Alaska</title><title>Geophysical research letters</title><description>The few prethaw observations of tundra carbon fluxes suggest that there may be large spring releases, but little is known about the scale and underlying mechanisms of this phenomenon. To address these questions, we combined ecosystem eddy flux measurements from two towers near Barrow, Alaska, with mechanistic soil‐core thawing experiment. During a 2 week period prior to snowmelt in 2014, large fluxes were measured, reducing net summer uptake of CO2 by 46% and adding 6% to cumulative CH4 emissions. Emission pulses were linked to unique rain‐on‐snow events enhancing soil cracking. Controlled laboratory experiment revealed that as surface ice thaws, an immediate, large pulse of trapped gases is emitted. These results suggest that the Arctic CO2 and CH4 spring pulse is a delayed release of biogenic gas production from the previous fall and that the pulse can be large enough to offset a significant fraction of the moderate Arctic tundra carbon sink. Key Points Prethaw carbon flux pulses during thaw offset 46% of CO2 summer uptake and added 6% to CH4 summer fluxes Laboratory experiment linked pulse emissions to a delayed microbial production mechanism The spring pulse may be a large underrepresented source of carbon in Arctic regions</description><subject>Arctic</subject><subject>Atmospheric precipitations</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>carbon fluxes</subject><subject>Carbon sinks</subject><subject>Cracking (corrosion)</subject><subject>eddy covariance</subject><subject>Eddy flux</subject><subject>Eddy flux measurements</subject><subject>Emissions</subject><subject>Emissions control</subject><subject>Experiments</subject><subject>Fluxes</subject><subject>Gas production</subject><subject>Gases</subject><subject>Ice</subject><subject>Laboratories</subject><subject>Melting</subject><subject>Methane</subject><subject>Oil and gas production</subject><subject>pulse</subject><subject>Rain</subject><subject>Snow</subject><subject>Snowmelt</subject><subject>Soil</subject><subject>Spring</subject><subject>Spring (season)</subject><subject>Summer</subject><subject>Taiga &amp; tundra</subject><subject>thaw</subject><subject>Thawing</subject><subject>Thaws</subject><subject>Towers</subject><subject>Tundra</subject><subject>Uptake</subject><subject>Vortices</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLw0AUhBdRsFZv_oAFz9H39mU3m2MJ2gqBgigew3azbVPTTd1NKP33turBk6eZw_AxM4zdItwjgHgQgGpaQoZCwBkbYZ6miQbIztkIID96kalLdhXjBgAICEfsvTRh5XgxF9z4mhezlLttE2PT-ciXodvyXdceVp03Le8HXwfD6yE0fsXj7lv6tdnzxnPfhX7tgueT1sQPc80ulqaN7uZXx-zt6fG1mCXlfPpcTMrEpoA6EWhrBcqZWoPCnEQmQWtJVJOltF6gXmRkl1o4Ja1VVi2cBnKZlGgdCUljdvfD3YXuc3CxrzbdEI5tY4U5ilxrQvVvSitBlII-scRPat-07lAd921NOFQI1end6u-71fSllJJQ0xfxo2ts</recordid><startdate>20170116</startdate><enddate>20170116</enddate><creator>Raz‐Yaseef, Naama</creator><creator>Torn, Margaret S.</creator><creator>Wu, Yuxin</creator><creator>Billesbach, Dave P.</creator><creator>Liljedahl, Anna K.</creator><creator>Kneafsey, Timothy J.</creator><creator>Romanovsky, Vladimir E.</creator><creator>Cook, David R.</creator><creator>Wullschleger, Stan D.</creator><general>John Wiley &amp; Sons, Inc</general><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9515-2087</orcidid><orcidid>https://orcid.org/0000-0003-3645-7590</orcidid><orcidid>https://orcid.org/0000-0001-8661-9178</orcidid><orcidid>https://orcid.org/0000-0002-9869-0446</orcidid><orcidid>https://orcid.org/0000-0002-8174-0099</orcidid><orcidid>https://orcid.org/0000-0002-7405-1607</orcidid><orcidid>https://orcid.org/0000-0002-6953-0179</orcidid><orcidid>https://orcid.org/0000-0001-7114-6443</orcidid><orcidid>https://orcid.org/0000-0002-3926-8587</orcidid></search><sort><creationdate>20170116</creationdate><title>Large CO2 and CH4 emissions from polygonal tundra during spring thaw in northern Alaska</title><author>Raz‐Yaseef, Naama ; Torn, Margaret S. ; Wu, Yuxin ; Billesbach, Dave P. ; Liljedahl, Anna K. ; Kneafsey, Timothy J. ; Romanovsky, Vladimir E. ; Cook, David R. ; Wullschleger, Stan D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4018-21cd606ead806193275088533d3c34db18b73cf82e65cc6c6be803e7551ce3253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Arctic</topic><topic>Atmospheric precipitations</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>carbon fluxes</topic><topic>Carbon sinks</topic><topic>Cracking (corrosion)</topic><topic>eddy covariance</topic><topic>Eddy flux</topic><topic>Eddy flux measurements</topic><topic>Emissions</topic><topic>Emissions control</topic><topic>Experiments</topic><topic>Fluxes</topic><topic>Gas production</topic><topic>Gases</topic><topic>Ice</topic><topic>Laboratories</topic><topic>Melting</topic><topic>Methane</topic><topic>Oil and gas production</topic><topic>pulse</topic><topic>Rain</topic><topic>Snow</topic><topic>Snowmelt</topic><topic>Soil</topic><topic>Spring</topic><topic>Spring (season)</topic><topic>Summer</topic><topic>Taiga &amp; tundra</topic><topic>thaw</topic><topic>Thawing</topic><topic>Thaws</topic><topic>Towers</topic><topic>Tundra</topic><topic>Uptake</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raz‐Yaseef, Naama</creatorcontrib><creatorcontrib>Torn, Margaret S.</creatorcontrib><creatorcontrib>Wu, Yuxin</creatorcontrib><creatorcontrib>Billesbach, Dave P.</creatorcontrib><creatorcontrib>Liljedahl, Anna K.</creatorcontrib><creatorcontrib>Kneafsey, Timothy J.</creatorcontrib><creatorcontrib>Romanovsky, Vladimir E.</creatorcontrib><creatorcontrib>Cook, David R.</creatorcontrib><creatorcontrib>Wullschleger, Stan D.</creatorcontrib><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raz‐Yaseef, Naama</au><au>Torn, Margaret S.</au><au>Wu, Yuxin</au><au>Billesbach, Dave P.</au><au>Liljedahl, Anna K.</au><au>Kneafsey, Timothy J.</au><au>Romanovsky, Vladimir E.</au><au>Cook, David R.</au><au>Wullschleger, Stan D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large CO2 and CH4 emissions from polygonal tundra during spring thaw in northern Alaska</atitle><jtitle>Geophysical research letters</jtitle><date>2017-01-16</date><risdate>2017</risdate><volume>44</volume><issue>1</issue><spage>504</spage><epage>513</epage><pages>504-513</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>The few prethaw observations of tundra carbon fluxes suggest that there may be large spring releases, but little is known about the scale and underlying mechanisms of this phenomenon. To address these questions, we combined ecosystem eddy flux measurements from two towers near Barrow, Alaska, with mechanistic soil‐core thawing experiment. During a 2 week period prior to snowmelt in 2014, large fluxes were measured, reducing net summer uptake of CO2 by 46% and adding 6% to cumulative CH4 emissions. Emission pulses were linked to unique rain‐on‐snow events enhancing soil cracking. Controlled laboratory experiment revealed that as surface ice thaws, an immediate, large pulse of trapped gases is emitted. These results suggest that the Arctic CO2 and CH4 spring pulse is a delayed release of biogenic gas production from the previous fall and that the pulse can be large enough to offset a significant fraction of the moderate Arctic tundra carbon sink. Key Points Prethaw carbon flux pulses during thaw offset 46% of CO2 summer uptake and added 6% to CH4 summer fluxes Laboratory experiment linked pulse emissions to a delayed microbial production mechanism The spring pulse may be a large underrepresented source of carbon in Arctic regions</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2016GL071220</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9515-2087</orcidid><orcidid>https://orcid.org/0000-0003-3645-7590</orcidid><orcidid>https://orcid.org/0000-0001-8661-9178</orcidid><orcidid>https://orcid.org/0000-0002-9869-0446</orcidid><orcidid>https://orcid.org/0000-0002-8174-0099</orcidid><orcidid>https://orcid.org/0000-0002-7405-1607</orcidid><orcidid>https://orcid.org/0000-0002-6953-0179</orcidid><orcidid>https://orcid.org/0000-0001-7114-6443</orcidid><orcidid>https://orcid.org/0000-0002-3926-8587</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2017-01, Vol.44 (1), p.504-513
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_1912988316
source Wiley Online Library - AutoHoldings Journals; Wiley Online Library Free Content; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals
subjects Arctic
Atmospheric precipitations
Carbon
Carbon dioxide
carbon fluxes
Carbon sinks
Cracking (corrosion)
eddy covariance
Eddy flux
Eddy flux measurements
Emissions
Emissions control
Experiments
Fluxes
Gas production
Gases
Ice
Laboratories
Melting
Methane
Oil and gas production
pulse
Rain
Snow
Snowmelt
Soil
Spring
Spring (season)
Summer
Taiga & tundra
thaw
Thawing
Thaws
Towers
Tundra
Uptake
Vortices
title Large CO2 and CH4 emissions from polygonal tundra during spring thaw in northern Alaska
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20CO2%20and%20CH4%20emissions%20from%20polygonal%20tundra%20during%20spring%20thaw%20in%20northern%20Alaska&rft.jtitle=Geophysical%20research%20letters&rft.au=Raz%E2%80%90Yaseef,%20Naama&rft.date=2017-01-16&rft.volume=44&rft.issue=1&rft.spage=504&rft.epage=513&rft.pages=504-513&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2016GL071220&rft_dat=%3Cproquest_wiley%3E1912988316%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1862334085&rft_id=info:pmid/&rfr_iscdi=true