Chitosan-fabricated Ag nanoparticles and larvivorous fishes: a novel route to control the coastal malaria vector Anopheles sundaicus?
Mosquitoes represent a key threat for millions of humans worldwide, since they act as vectors for malaria, dengue fever, yellow fever, Zika virus, filariasis, and encephalitis. In this study, we tested chitosan-synthesized silver nanoparticles (Ch–AgNP) using male crab shells as a source of chitosan...
Gespeichert in:
Veröffentlicht in: | Hydrobiologia 2017-08, Vol.797 (1), p.335-350 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 350 |
---|---|
container_issue | 1 |
container_start_page | 335 |
container_title | Hydrobiologia |
container_volume | 797 |
creator | Murugan, Kadarkarai Anitha, Jaganathan Suresh, Udaiyan Rajaganesh, Rajapandian Panneerselvam, Chellasamy Aziz, Al Thabiani Tseng, Li-Chun Kalimuthu, Kandasamy Alsalhi, Mohamad Saleh Devanesan, Sandhanasamy Nicoletti, Marcello Sarkar, Santosh Kumar Benelli, Giovanni Hwang, Jiang-Shiou |
description | Mosquitoes represent a key threat for millions of humans worldwide, since they act as vectors for malaria, dengue fever, yellow fever, Zika virus, filariasis, and encephalitis. In this study, we tested chitosan-synthesized silver nanoparticles (Ch–AgNP) using male crab shells as a source of chitosan, which acted as a reducing and capping agent. Ch–AgNP were characterized by UV–Vis spectroscopy, FTIR, SEM, EDX, and XRD. Chitosan and Ch–AgNP were tested against larvae and pupae of the malaria vector
Anopheles sundaicus
under laboratory and field conditions. Antibacterial properties of Ch–AgNP were tested on
Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae
, and
Proteus vulgaris
using the agar disk diffusion assay. The standard predation efficiency of the mosquito natural enemy
Carassius auratus
in laboratory conditions was 60.80 (on larva II) and 19.68 individuals (on larva III) per day, while post-treatment with sub-lethal doses of Ch–AgNP, the predation efficiency was boosted to 72.00 (on larva II) and 25.80 individuals (on larva III). Overall, Ch–AgNP fabricated using chitosan extracted from the male crab shells of the hydrothermal vent species
Xenograpsus
testudinatus
may offer a novel and safer control strategy against
A. sundaicus
mosquito vectors, as well as against Gram-negative and Gram-positive pathogenic bacteria. |
doi_str_mv | 10.1007/s10750-017-3196-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1912907178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A496662171</galeid><sourcerecordid>A496662171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-d1685cb06d41857ed0a834d9a8bdd6a66ae79422fff257e633d10463d2c428e13</originalsourceid><addsrcrecordid>eNp1kduKFDEQhhtRcFx9AO8CXnnRa6oPSdobGQYPCwuCh-tQk6RnsvQkYyo9rA_ge5tmhHVAyUVC5f_-ouqvqpfAr4Fz-YaAy57XHGTdwiBqeFStoJdt3QPIx9WKc1C1gl49rZ4R3fHCDA1fVb82e58jYahH3CZvMDvL1jsWMMQjpuzN5IhhsGzCdPKnmOJMbPS0d_SWIQvx5CZWitmxHJmJIac4sbx35Y2UcWIHLKhHdnImx8TWxXjvFleag0VvZnr3vHoy4kTuxZ_7qvr-4f23zaf69vPHm836tjadanNtQajebLmwHaheOstRtZ0dUG2tFSgEOjl0TTOOY1O-Rdta4J1obWO6Rjlor6pXZ99jij9mR1nfxTmF0lLDAM3AJUj1oNrh5LQPY8wJzcGT0etuEEI0IBev63-oyrHu4Mse3OhL_QJ4fQEsu3L3eYczkb75-uVSC2etSZEouVEfkz9g-qmB6yVwfQ5cl8D1ErhemObMUNGGnUt_Dfdf6DelHq1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1912907178</pqid></control><display><type>article</type><title>Chitosan-fabricated Ag nanoparticles and larvivorous fishes: a novel route to control the coastal malaria vector Anopheles sundaicus?</title><source>Springer Nature - Complete Springer Journals</source><creator>Murugan, Kadarkarai ; Anitha, Jaganathan ; Suresh, Udaiyan ; Rajaganesh, Rajapandian ; Panneerselvam, Chellasamy ; Aziz, Al Thabiani ; Tseng, Li-Chun ; Kalimuthu, Kandasamy ; Alsalhi, Mohamad Saleh ; Devanesan, Sandhanasamy ; Nicoletti, Marcello ; Sarkar, Santosh Kumar ; Benelli, Giovanni ; Hwang, Jiang-Shiou</creator><creatorcontrib>Murugan, Kadarkarai ; Anitha, Jaganathan ; Suresh, Udaiyan ; Rajaganesh, Rajapandian ; Panneerselvam, Chellasamy ; Aziz, Al Thabiani ; Tseng, Li-Chun ; Kalimuthu, Kandasamy ; Alsalhi, Mohamad Saleh ; Devanesan, Sandhanasamy ; Nicoletti, Marcello ; Sarkar, Santosh Kumar ; Benelli, Giovanni ; Hwang, Jiang-Shiou</creatorcontrib><description>Mosquitoes represent a key threat for millions of humans worldwide, since they act as vectors for malaria, dengue fever, yellow fever, Zika virus, filariasis, and encephalitis. In this study, we tested chitosan-synthesized silver nanoparticles (Ch–AgNP) using male crab shells as a source of chitosan, which acted as a reducing and capping agent. Ch–AgNP were characterized by UV–Vis spectroscopy, FTIR, SEM, EDX, and XRD. Chitosan and Ch–AgNP were tested against larvae and pupae of the malaria vector
Anopheles sundaicus
under laboratory and field conditions. Antibacterial properties of Ch–AgNP were tested on
Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae
, and
Proteus vulgaris
using the agar disk diffusion assay. The standard predation efficiency of the mosquito natural enemy
Carassius auratus
in laboratory conditions was 60.80 (on larva II) and 19.68 individuals (on larva III) per day, while post-treatment with sub-lethal doses of Ch–AgNP, the predation efficiency was boosted to 72.00 (on larva II) and 25.80 individuals (on larva III). Overall, Ch–AgNP fabricated using chitosan extracted from the male crab shells of the hydrothermal vent species
Xenograpsus
testudinatus
may offer a novel and safer control strategy against
A. sundaicus
mosquito vectors, as well as against Gram-negative and Gram-positive pathogenic bacteria.</description><identifier>ISSN: 0018-8158</identifier><identifier>EISSN: 1573-5117</identifier><identifier>DOI: 10.1007/s10750-017-3196-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Agar ; Analytical methods ; Anopheles ; Anopheles sundaicus ; Antibacterial agents ; Aquatic insects ; Assaying ; Bacillus subtilis ; Bacteria ; Biomedical and Life Sciences ; Capping ; Carassius auratus ; Chitosan ; Coastal environments ; Control ; Dengue fever ; Diffusion ; Dye dispersion ; E coli ; Ecology ; Efficiency ; Encephalitis ; Escherichia coli ; Fever ; Filariasis ; Fourier transforms ; Freshwater & Marine Ecology ; Human diseases ; Hydrothermal vent ecosystems ; Infrared spectroscopy ; Insecticides ; Interspecific relationships ; Klebsiella ; Klebsiella pneumoniae ; Laboratories ; Larvae ; Life Sciences ; Malaria ; Males ; Marine crustaceans ; Mosquitoes ; Nanoparticles ; Pathogenic bacteria ; Pneumonia ; Predation ; Primary Research Paper ; Properties ; Proteus vulgaris ; Pupae ; Shells ; Silver ; Tropical diseases ; Ultraviolet radiation ; Ultraviolet spectroscopy ; Ultraviolet-visible spectroscopy ; Vector-borne diseases ; Vectors ; Viral diseases ; Viruses ; Xenograpsus testudinatus ; Yellow fever ; Zika virus ; Zoology</subject><ispartof>Hydrobiologia, 2017-08, Vol.797 (1), p.335-350</ispartof><rights>Springer International Publishing Switzerland 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Hydrobiologia is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-d1685cb06d41857ed0a834d9a8bdd6a66ae79422fff257e633d10463d2c428e13</citedby><cites>FETCH-LOGICAL-c483t-d1685cb06d41857ed0a834d9a8bdd6a66ae79422fff257e633d10463d2c428e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10750-017-3196-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10750-017-3196-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Murugan, Kadarkarai</creatorcontrib><creatorcontrib>Anitha, Jaganathan</creatorcontrib><creatorcontrib>Suresh, Udaiyan</creatorcontrib><creatorcontrib>Rajaganesh, Rajapandian</creatorcontrib><creatorcontrib>Panneerselvam, Chellasamy</creatorcontrib><creatorcontrib>Aziz, Al Thabiani</creatorcontrib><creatorcontrib>Tseng, Li-Chun</creatorcontrib><creatorcontrib>Kalimuthu, Kandasamy</creatorcontrib><creatorcontrib>Alsalhi, Mohamad Saleh</creatorcontrib><creatorcontrib>Devanesan, Sandhanasamy</creatorcontrib><creatorcontrib>Nicoletti, Marcello</creatorcontrib><creatorcontrib>Sarkar, Santosh Kumar</creatorcontrib><creatorcontrib>Benelli, Giovanni</creatorcontrib><creatorcontrib>Hwang, Jiang-Shiou</creatorcontrib><title>Chitosan-fabricated Ag nanoparticles and larvivorous fishes: a novel route to control the coastal malaria vector Anopheles sundaicus?</title><title>Hydrobiologia</title><addtitle>Hydrobiologia</addtitle><description>Mosquitoes represent a key threat for millions of humans worldwide, since they act as vectors for malaria, dengue fever, yellow fever, Zika virus, filariasis, and encephalitis. In this study, we tested chitosan-synthesized silver nanoparticles (Ch–AgNP) using male crab shells as a source of chitosan, which acted as a reducing and capping agent. Ch–AgNP were characterized by UV–Vis spectroscopy, FTIR, SEM, EDX, and XRD. Chitosan and Ch–AgNP were tested against larvae and pupae of the malaria vector
Anopheles sundaicus
under laboratory and field conditions. Antibacterial properties of Ch–AgNP were tested on
Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae
, and
Proteus vulgaris
using the agar disk diffusion assay. The standard predation efficiency of the mosquito natural enemy
Carassius auratus
in laboratory conditions was 60.80 (on larva II) and 19.68 individuals (on larva III) per day, while post-treatment with sub-lethal doses of Ch–AgNP, the predation efficiency was boosted to 72.00 (on larva II) and 25.80 individuals (on larva III). Overall, Ch–AgNP fabricated using chitosan extracted from the male crab shells of the hydrothermal vent species
Xenograpsus
testudinatus
may offer a novel and safer control strategy against
A. sundaicus
mosquito vectors, as well as against Gram-negative and Gram-positive pathogenic bacteria.</description><subject>Agar</subject><subject>Analytical methods</subject><subject>Anopheles</subject><subject>Anopheles sundaicus</subject><subject>Antibacterial agents</subject><subject>Aquatic insects</subject><subject>Assaying</subject><subject>Bacillus subtilis</subject><subject>Bacteria</subject><subject>Biomedical and Life Sciences</subject><subject>Capping</subject><subject>Carassius auratus</subject><subject>Chitosan</subject><subject>Coastal environments</subject><subject>Control</subject><subject>Dengue fever</subject><subject>Diffusion</subject><subject>Dye dispersion</subject><subject>E coli</subject><subject>Ecology</subject><subject>Efficiency</subject><subject>Encephalitis</subject><subject>Escherichia coli</subject><subject>Fever</subject><subject>Filariasis</subject><subject>Fourier transforms</subject><subject>Freshwater & Marine Ecology</subject><subject>Human diseases</subject><subject>Hydrothermal vent ecosystems</subject><subject>Infrared spectroscopy</subject><subject>Insecticides</subject><subject>Interspecific relationships</subject><subject>Klebsiella</subject><subject>Klebsiella pneumoniae</subject><subject>Laboratories</subject><subject>Larvae</subject><subject>Life Sciences</subject><subject>Malaria</subject><subject>Males</subject><subject>Marine crustaceans</subject><subject>Mosquitoes</subject><subject>Nanoparticles</subject><subject>Pathogenic bacteria</subject><subject>Pneumonia</subject><subject>Predation</subject><subject>Primary Research Paper</subject><subject>Properties</subject><subject>Proteus vulgaris</subject><subject>Pupae</subject><subject>Shells</subject><subject>Silver</subject><subject>Tropical diseases</subject><subject>Ultraviolet radiation</subject><subject>Ultraviolet spectroscopy</subject><subject>Ultraviolet-visible spectroscopy</subject><subject>Vector-borne diseases</subject><subject>Vectors</subject><subject>Viral diseases</subject><subject>Viruses</subject><subject>Xenograpsus testudinatus</subject><subject>Yellow fever</subject><subject>Zika virus</subject><subject>Zoology</subject><issn>0018-8158</issn><issn>1573-5117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kduKFDEQhhtRcFx9AO8CXnnRa6oPSdobGQYPCwuCh-tQk6RnsvQkYyo9rA_ge5tmhHVAyUVC5f_-ouqvqpfAr4Fz-YaAy57XHGTdwiBqeFStoJdt3QPIx9WKc1C1gl49rZ4R3fHCDA1fVb82e58jYahH3CZvMDvL1jsWMMQjpuzN5IhhsGzCdPKnmOJMbPS0d_SWIQvx5CZWitmxHJmJIac4sbx35Y2UcWIHLKhHdnImx8TWxXjvFleag0VvZnr3vHoy4kTuxZ_7qvr-4f23zaf69vPHm836tjadanNtQajebLmwHaheOstRtZ0dUG2tFSgEOjl0TTOOY1O-Rdta4J1obWO6Rjlor6pXZ99jij9mR1nfxTmF0lLDAM3AJUj1oNrh5LQPY8wJzcGT0etuEEI0IBev63-oyrHu4Mse3OhL_QJ4fQEsu3L3eYczkb75-uVSC2etSZEouVEfkz9g-qmB6yVwfQ5cl8D1ErhemObMUNGGnUt_Dfdf6DelHq1w</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Murugan, Kadarkarai</creator><creator>Anitha, Jaganathan</creator><creator>Suresh, Udaiyan</creator><creator>Rajaganesh, Rajapandian</creator><creator>Panneerselvam, Chellasamy</creator><creator>Aziz, Al Thabiani</creator><creator>Tseng, Li-Chun</creator><creator>Kalimuthu, Kandasamy</creator><creator>Alsalhi, Mohamad Saleh</creator><creator>Devanesan, Sandhanasamy</creator><creator>Nicoletti, Marcello</creator><creator>Sarkar, Santosh Kumar</creator><creator>Benelli, Giovanni</creator><creator>Hwang, Jiang-Shiou</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QH</scope><scope>7SN</scope><scope>7SS</scope><scope>7U7</scope><scope>7UA</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope></search><sort><creationdate>20170801</creationdate><title>Chitosan-fabricated Ag nanoparticles and larvivorous fishes: a novel route to control the coastal malaria vector Anopheles sundaicus?</title><author>Murugan, Kadarkarai ; Anitha, Jaganathan ; Suresh, Udaiyan ; Rajaganesh, Rajapandian ; Panneerselvam, Chellasamy ; Aziz, Al Thabiani ; Tseng, Li-Chun ; Kalimuthu, Kandasamy ; Alsalhi, Mohamad Saleh ; Devanesan, Sandhanasamy ; Nicoletti, Marcello ; Sarkar, Santosh Kumar ; Benelli, Giovanni ; Hwang, Jiang-Shiou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-d1685cb06d41857ed0a834d9a8bdd6a66ae79422fff257e633d10463d2c428e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agar</topic><topic>Analytical methods</topic><topic>Anopheles</topic><topic>Anopheles sundaicus</topic><topic>Antibacterial agents</topic><topic>Aquatic insects</topic><topic>Assaying</topic><topic>Bacillus subtilis</topic><topic>Bacteria</topic><topic>Biomedical and Life Sciences</topic><topic>Capping</topic><topic>Carassius auratus</topic><topic>Chitosan</topic><topic>Coastal environments</topic><topic>Control</topic><topic>Dengue fever</topic><topic>Diffusion</topic><topic>Dye dispersion</topic><topic>E coli</topic><topic>Ecology</topic><topic>Efficiency</topic><topic>Encephalitis</topic><topic>Escherichia coli</topic><topic>Fever</topic><topic>Filariasis</topic><topic>Fourier transforms</topic><topic>Freshwater & Marine Ecology</topic><topic>Human diseases</topic><topic>Hydrothermal vent ecosystems</topic><topic>Infrared spectroscopy</topic><topic>Insecticides</topic><topic>Interspecific relationships</topic><topic>Klebsiella</topic><topic>Klebsiella pneumoniae</topic><topic>Laboratories</topic><topic>Larvae</topic><topic>Life Sciences</topic><topic>Malaria</topic><topic>Males</topic><topic>Marine crustaceans</topic><topic>Mosquitoes</topic><topic>Nanoparticles</topic><topic>Pathogenic bacteria</topic><topic>Pneumonia</topic><topic>Predation</topic><topic>Primary Research Paper</topic><topic>Properties</topic><topic>Proteus vulgaris</topic><topic>Pupae</topic><topic>Shells</topic><topic>Silver</topic><topic>Tropical diseases</topic><topic>Ultraviolet radiation</topic><topic>Ultraviolet spectroscopy</topic><topic>Ultraviolet-visible spectroscopy</topic><topic>Vector-borne diseases</topic><topic>Vectors</topic><topic>Viral diseases</topic><topic>Viruses</topic><topic>Xenograpsus testudinatus</topic><topic>Yellow fever</topic><topic>Zika virus</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murugan, Kadarkarai</creatorcontrib><creatorcontrib>Anitha, Jaganathan</creatorcontrib><creatorcontrib>Suresh, Udaiyan</creatorcontrib><creatorcontrib>Rajaganesh, Rajapandian</creatorcontrib><creatorcontrib>Panneerselvam, Chellasamy</creatorcontrib><creatorcontrib>Aziz, Al Thabiani</creatorcontrib><creatorcontrib>Tseng, Li-Chun</creatorcontrib><creatorcontrib>Kalimuthu, Kandasamy</creatorcontrib><creatorcontrib>Alsalhi, Mohamad Saleh</creatorcontrib><creatorcontrib>Devanesan, Sandhanasamy</creatorcontrib><creatorcontrib>Nicoletti, Marcello</creatorcontrib><creatorcontrib>Sarkar, Santosh Kumar</creatorcontrib><creatorcontrib>Benelli, Giovanni</creatorcontrib><creatorcontrib>Hwang, Jiang-Shiou</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><jtitle>Hydrobiologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murugan, Kadarkarai</au><au>Anitha, Jaganathan</au><au>Suresh, Udaiyan</au><au>Rajaganesh, Rajapandian</au><au>Panneerselvam, Chellasamy</au><au>Aziz, Al Thabiani</au><au>Tseng, Li-Chun</au><au>Kalimuthu, Kandasamy</au><au>Alsalhi, Mohamad Saleh</au><au>Devanesan, Sandhanasamy</au><au>Nicoletti, Marcello</au><au>Sarkar, Santosh Kumar</au><au>Benelli, Giovanni</au><au>Hwang, Jiang-Shiou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chitosan-fabricated Ag nanoparticles and larvivorous fishes: a novel route to control the coastal malaria vector Anopheles sundaicus?</atitle><jtitle>Hydrobiologia</jtitle><stitle>Hydrobiologia</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>797</volume><issue>1</issue><spage>335</spage><epage>350</epage><pages>335-350</pages><issn>0018-8158</issn><eissn>1573-5117</eissn><abstract>Mosquitoes represent a key threat for millions of humans worldwide, since they act as vectors for malaria, dengue fever, yellow fever, Zika virus, filariasis, and encephalitis. In this study, we tested chitosan-synthesized silver nanoparticles (Ch–AgNP) using male crab shells as a source of chitosan, which acted as a reducing and capping agent. Ch–AgNP were characterized by UV–Vis spectroscopy, FTIR, SEM, EDX, and XRD. Chitosan and Ch–AgNP were tested against larvae and pupae of the malaria vector
Anopheles sundaicus
under laboratory and field conditions. Antibacterial properties of Ch–AgNP were tested on
Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae
, and
Proteus vulgaris
using the agar disk diffusion assay. The standard predation efficiency of the mosquito natural enemy
Carassius auratus
in laboratory conditions was 60.80 (on larva II) and 19.68 individuals (on larva III) per day, while post-treatment with sub-lethal doses of Ch–AgNP, the predation efficiency was boosted to 72.00 (on larva II) and 25.80 individuals (on larva III). Overall, Ch–AgNP fabricated using chitosan extracted from the male crab shells of the hydrothermal vent species
Xenograpsus
testudinatus
may offer a novel and safer control strategy against
A. sundaicus
mosquito vectors, as well as against Gram-negative and Gram-positive pathogenic bacteria.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10750-017-3196-1</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-8158 |
ispartof | Hydrobiologia, 2017-08, Vol.797 (1), p.335-350 |
issn | 0018-8158 1573-5117 |
language | eng |
recordid | cdi_proquest_journals_1912907178 |
source | Springer Nature - Complete Springer Journals |
subjects | Agar Analytical methods Anopheles Anopheles sundaicus Antibacterial agents Aquatic insects Assaying Bacillus subtilis Bacteria Biomedical and Life Sciences Capping Carassius auratus Chitosan Coastal environments Control Dengue fever Diffusion Dye dispersion E coli Ecology Efficiency Encephalitis Escherichia coli Fever Filariasis Fourier transforms Freshwater & Marine Ecology Human diseases Hydrothermal vent ecosystems Infrared spectroscopy Insecticides Interspecific relationships Klebsiella Klebsiella pneumoniae Laboratories Larvae Life Sciences Malaria Males Marine crustaceans Mosquitoes Nanoparticles Pathogenic bacteria Pneumonia Predation Primary Research Paper Properties Proteus vulgaris Pupae Shells Silver Tropical diseases Ultraviolet radiation Ultraviolet spectroscopy Ultraviolet-visible spectroscopy Vector-borne diseases Vectors Viral diseases Viruses Xenograpsus testudinatus Yellow fever Zika virus Zoology |
title | Chitosan-fabricated Ag nanoparticles and larvivorous fishes: a novel route to control the coastal malaria vector Anopheles sundaicus? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A12%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chitosan-fabricated%20Ag%20nanoparticles%20and%20larvivorous%20fishes:%20a%20novel%20route%20to%20control%20the%20coastal%20malaria%20vector%20Anopheles%20sundaicus?&rft.jtitle=Hydrobiologia&rft.au=Murugan,%20Kadarkarai&rft.date=2017-08-01&rft.volume=797&rft.issue=1&rft.spage=335&rft.epage=350&rft.pages=335-350&rft.issn=0018-8158&rft.eissn=1573-5117&rft_id=info:doi/10.1007/s10750-017-3196-1&rft_dat=%3Cgale_proqu%3EA496662171%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1912907178&rft_id=info:pmid/&rft_galeid=A496662171&rfr_iscdi=true |