Chitosan-fabricated Ag nanoparticles and larvivorous fishes: a novel route to control the coastal malaria vector Anopheles sundaicus?

Mosquitoes represent a key threat for millions of humans worldwide, since they act as vectors for malaria, dengue fever, yellow fever, Zika virus, filariasis, and encephalitis. In this study, we tested chitosan-synthesized silver nanoparticles (Ch–AgNP) using male crab shells as a source of chitosan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrobiologia 2017-08, Vol.797 (1), p.335-350
Hauptverfasser: Murugan, Kadarkarai, Anitha, Jaganathan, Suresh, Udaiyan, Rajaganesh, Rajapandian, Panneerselvam, Chellasamy, Aziz, Al Thabiani, Tseng, Li-Chun, Kalimuthu, Kandasamy, Alsalhi, Mohamad Saleh, Devanesan, Sandhanasamy, Nicoletti, Marcello, Sarkar, Santosh Kumar, Benelli, Giovanni, Hwang, Jiang-Shiou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 350
container_issue 1
container_start_page 335
container_title Hydrobiologia
container_volume 797
creator Murugan, Kadarkarai
Anitha, Jaganathan
Suresh, Udaiyan
Rajaganesh, Rajapandian
Panneerselvam, Chellasamy
Aziz, Al Thabiani
Tseng, Li-Chun
Kalimuthu, Kandasamy
Alsalhi, Mohamad Saleh
Devanesan, Sandhanasamy
Nicoletti, Marcello
Sarkar, Santosh Kumar
Benelli, Giovanni
Hwang, Jiang-Shiou
description Mosquitoes represent a key threat for millions of humans worldwide, since they act as vectors for malaria, dengue fever, yellow fever, Zika virus, filariasis, and encephalitis. In this study, we tested chitosan-synthesized silver nanoparticles (Ch–AgNP) using male crab shells as a source of chitosan, which acted as a reducing and capping agent. Ch–AgNP were characterized by UV–Vis spectroscopy, FTIR, SEM, EDX, and XRD. Chitosan and Ch–AgNP were tested against larvae and pupae of the malaria vector Anopheles sundaicus under laboratory and field conditions. Antibacterial properties of Ch–AgNP were tested on Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae , and Proteus vulgaris using the agar disk diffusion assay. The standard predation efficiency of the mosquito natural enemy Carassius auratus in laboratory conditions was 60.80 (on larva II) and 19.68 individuals (on larva III) per day, while post-treatment with sub-lethal doses of Ch–AgNP, the predation efficiency was boosted to 72.00 (on larva II) and 25.80 individuals (on larva III). Overall, Ch–AgNP fabricated using chitosan extracted from the male crab shells of the hydrothermal vent species Xenograpsus testudinatus may offer a novel and safer control strategy against A. sundaicus mosquito vectors, as well as against Gram-negative and Gram-positive pathogenic bacteria.
doi_str_mv 10.1007/s10750-017-3196-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1912907178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A496662171</galeid><sourcerecordid>A496662171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-d1685cb06d41857ed0a834d9a8bdd6a66ae79422fff257e633d10463d2c428e13</originalsourceid><addsrcrecordid>eNp1kduKFDEQhhtRcFx9AO8CXnnRa6oPSdobGQYPCwuCh-tQk6RnsvQkYyo9rA_ge5tmhHVAyUVC5f_-ouqvqpfAr4Fz-YaAy57XHGTdwiBqeFStoJdt3QPIx9WKc1C1gl49rZ4R3fHCDA1fVb82e58jYahH3CZvMDvL1jsWMMQjpuzN5IhhsGzCdPKnmOJMbPS0d_SWIQvx5CZWitmxHJmJIac4sbx35Y2UcWIHLKhHdnImx8TWxXjvFleag0VvZnr3vHoy4kTuxZ_7qvr-4f23zaf69vPHm836tjadanNtQajebLmwHaheOstRtZ0dUG2tFSgEOjl0TTOOY1O-Rdta4J1obWO6Rjlor6pXZ99jij9mR1nfxTmF0lLDAM3AJUj1oNrh5LQPY8wJzcGT0etuEEI0IBev63-oyrHu4Mse3OhL_QJ4fQEsu3L3eYczkb75-uVSC2etSZEouVEfkz9g-qmB6yVwfQ5cl8D1ErhemObMUNGGnUt_Dfdf6DelHq1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1912907178</pqid></control><display><type>article</type><title>Chitosan-fabricated Ag nanoparticles and larvivorous fishes: a novel route to control the coastal malaria vector Anopheles sundaicus?</title><source>Springer Nature - Complete Springer Journals</source><creator>Murugan, Kadarkarai ; Anitha, Jaganathan ; Suresh, Udaiyan ; Rajaganesh, Rajapandian ; Panneerselvam, Chellasamy ; Aziz, Al Thabiani ; Tseng, Li-Chun ; Kalimuthu, Kandasamy ; Alsalhi, Mohamad Saleh ; Devanesan, Sandhanasamy ; Nicoletti, Marcello ; Sarkar, Santosh Kumar ; Benelli, Giovanni ; Hwang, Jiang-Shiou</creator><creatorcontrib>Murugan, Kadarkarai ; Anitha, Jaganathan ; Suresh, Udaiyan ; Rajaganesh, Rajapandian ; Panneerselvam, Chellasamy ; Aziz, Al Thabiani ; Tseng, Li-Chun ; Kalimuthu, Kandasamy ; Alsalhi, Mohamad Saleh ; Devanesan, Sandhanasamy ; Nicoletti, Marcello ; Sarkar, Santosh Kumar ; Benelli, Giovanni ; Hwang, Jiang-Shiou</creatorcontrib><description>Mosquitoes represent a key threat for millions of humans worldwide, since they act as vectors for malaria, dengue fever, yellow fever, Zika virus, filariasis, and encephalitis. In this study, we tested chitosan-synthesized silver nanoparticles (Ch–AgNP) using male crab shells as a source of chitosan, which acted as a reducing and capping agent. Ch–AgNP were characterized by UV–Vis spectroscopy, FTIR, SEM, EDX, and XRD. Chitosan and Ch–AgNP were tested against larvae and pupae of the malaria vector Anopheles sundaicus under laboratory and field conditions. Antibacterial properties of Ch–AgNP were tested on Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae , and Proteus vulgaris using the agar disk diffusion assay. The standard predation efficiency of the mosquito natural enemy Carassius auratus in laboratory conditions was 60.80 (on larva II) and 19.68 individuals (on larva III) per day, while post-treatment with sub-lethal doses of Ch–AgNP, the predation efficiency was boosted to 72.00 (on larva II) and 25.80 individuals (on larva III). Overall, Ch–AgNP fabricated using chitosan extracted from the male crab shells of the hydrothermal vent species Xenograpsus testudinatus may offer a novel and safer control strategy against A. sundaicus mosquito vectors, as well as against Gram-negative and Gram-positive pathogenic bacteria.</description><identifier>ISSN: 0018-8158</identifier><identifier>EISSN: 1573-5117</identifier><identifier>DOI: 10.1007/s10750-017-3196-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Agar ; Analytical methods ; Anopheles ; Anopheles sundaicus ; Antibacterial agents ; Aquatic insects ; Assaying ; Bacillus subtilis ; Bacteria ; Biomedical and Life Sciences ; Capping ; Carassius auratus ; Chitosan ; Coastal environments ; Control ; Dengue fever ; Diffusion ; Dye dispersion ; E coli ; Ecology ; Efficiency ; Encephalitis ; Escherichia coli ; Fever ; Filariasis ; Fourier transforms ; Freshwater &amp; Marine Ecology ; Human diseases ; Hydrothermal vent ecosystems ; Infrared spectroscopy ; Insecticides ; Interspecific relationships ; Klebsiella ; Klebsiella pneumoniae ; Laboratories ; Larvae ; Life Sciences ; Malaria ; Males ; Marine crustaceans ; Mosquitoes ; Nanoparticles ; Pathogenic bacteria ; Pneumonia ; Predation ; Primary Research Paper ; Properties ; Proteus vulgaris ; Pupae ; Shells ; Silver ; Tropical diseases ; Ultraviolet radiation ; Ultraviolet spectroscopy ; Ultraviolet-visible spectroscopy ; Vector-borne diseases ; Vectors ; Viral diseases ; Viruses ; Xenograpsus testudinatus ; Yellow fever ; Zika virus ; Zoology</subject><ispartof>Hydrobiologia, 2017-08, Vol.797 (1), p.335-350</ispartof><rights>Springer International Publishing Switzerland 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Hydrobiologia is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-d1685cb06d41857ed0a834d9a8bdd6a66ae79422fff257e633d10463d2c428e13</citedby><cites>FETCH-LOGICAL-c483t-d1685cb06d41857ed0a834d9a8bdd6a66ae79422fff257e633d10463d2c428e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10750-017-3196-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10750-017-3196-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Murugan, Kadarkarai</creatorcontrib><creatorcontrib>Anitha, Jaganathan</creatorcontrib><creatorcontrib>Suresh, Udaiyan</creatorcontrib><creatorcontrib>Rajaganesh, Rajapandian</creatorcontrib><creatorcontrib>Panneerselvam, Chellasamy</creatorcontrib><creatorcontrib>Aziz, Al Thabiani</creatorcontrib><creatorcontrib>Tseng, Li-Chun</creatorcontrib><creatorcontrib>Kalimuthu, Kandasamy</creatorcontrib><creatorcontrib>Alsalhi, Mohamad Saleh</creatorcontrib><creatorcontrib>Devanesan, Sandhanasamy</creatorcontrib><creatorcontrib>Nicoletti, Marcello</creatorcontrib><creatorcontrib>Sarkar, Santosh Kumar</creatorcontrib><creatorcontrib>Benelli, Giovanni</creatorcontrib><creatorcontrib>Hwang, Jiang-Shiou</creatorcontrib><title>Chitosan-fabricated Ag nanoparticles and larvivorous fishes: a novel route to control the coastal malaria vector Anopheles sundaicus?</title><title>Hydrobiologia</title><addtitle>Hydrobiologia</addtitle><description>Mosquitoes represent a key threat for millions of humans worldwide, since they act as vectors for malaria, dengue fever, yellow fever, Zika virus, filariasis, and encephalitis. In this study, we tested chitosan-synthesized silver nanoparticles (Ch–AgNP) using male crab shells as a source of chitosan, which acted as a reducing and capping agent. Ch–AgNP were characterized by UV–Vis spectroscopy, FTIR, SEM, EDX, and XRD. Chitosan and Ch–AgNP were tested against larvae and pupae of the malaria vector Anopheles sundaicus under laboratory and field conditions. Antibacterial properties of Ch–AgNP were tested on Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae , and Proteus vulgaris using the agar disk diffusion assay. The standard predation efficiency of the mosquito natural enemy Carassius auratus in laboratory conditions was 60.80 (on larva II) and 19.68 individuals (on larva III) per day, while post-treatment with sub-lethal doses of Ch–AgNP, the predation efficiency was boosted to 72.00 (on larva II) and 25.80 individuals (on larva III). Overall, Ch–AgNP fabricated using chitosan extracted from the male crab shells of the hydrothermal vent species Xenograpsus testudinatus may offer a novel and safer control strategy against A. sundaicus mosquito vectors, as well as against Gram-negative and Gram-positive pathogenic bacteria.</description><subject>Agar</subject><subject>Analytical methods</subject><subject>Anopheles</subject><subject>Anopheles sundaicus</subject><subject>Antibacterial agents</subject><subject>Aquatic insects</subject><subject>Assaying</subject><subject>Bacillus subtilis</subject><subject>Bacteria</subject><subject>Biomedical and Life Sciences</subject><subject>Capping</subject><subject>Carassius auratus</subject><subject>Chitosan</subject><subject>Coastal environments</subject><subject>Control</subject><subject>Dengue fever</subject><subject>Diffusion</subject><subject>Dye dispersion</subject><subject>E coli</subject><subject>Ecology</subject><subject>Efficiency</subject><subject>Encephalitis</subject><subject>Escherichia coli</subject><subject>Fever</subject><subject>Filariasis</subject><subject>Fourier transforms</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Human diseases</subject><subject>Hydrothermal vent ecosystems</subject><subject>Infrared spectroscopy</subject><subject>Insecticides</subject><subject>Interspecific relationships</subject><subject>Klebsiella</subject><subject>Klebsiella pneumoniae</subject><subject>Laboratories</subject><subject>Larvae</subject><subject>Life Sciences</subject><subject>Malaria</subject><subject>Males</subject><subject>Marine crustaceans</subject><subject>Mosquitoes</subject><subject>Nanoparticles</subject><subject>Pathogenic bacteria</subject><subject>Pneumonia</subject><subject>Predation</subject><subject>Primary Research Paper</subject><subject>Properties</subject><subject>Proteus vulgaris</subject><subject>Pupae</subject><subject>Shells</subject><subject>Silver</subject><subject>Tropical diseases</subject><subject>Ultraviolet radiation</subject><subject>Ultraviolet spectroscopy</subject><subject>Ultraviolet-visible spectroscopy</subject><subject>Vector-borne diseases</subject><subject>Vectors</subject><subject>Viral diseases</subject><subject>Viruses</subject><subject>Xenograpsus testudinatus</subject><subject>Yellow fever</subject><subject>Zika virus</subject><subject>Zoology</subject><issn>0018-8158</issn><issn>1573-5117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kduKFDEQhhtRcFx9AO8CXnnRa6oPSdobGQYPCwuCh-tQk6RnsvQkYyo9rA_ge5tmhHVAyUVC5f_-ouqvqpfAr4Fz-YaAy57XHGTdwiBqeFStoJdt3QPIx9WKc1C1gl49rZ4R3fHCDA1fVb82e58jYahH3CZvMDvL1jsWMMQjpuzN5IhhsGzCdPKnmOJMbPS0d_SWIQvx5CZWitmxHJmJIac4sbx35Y2UcWIHLKhHdnImx8TWxXjvFleag0VvZnr3vHoy4kTuxZ_7qvr-4f23zaf69vPHm836tjadanNtQajebLmwHaheOstRtZ0dUG2tFSgEOjl0TTOOY1O-Rdta4J1obWO6Rjlor6pXZ99jij9mR1nfxTmF0lLDAM3AJUj1oNrh5LQPY8wJzcGT0etuEEI0IBev63-oyrHu4Mse3OhL_QJ4fQEsu3L3eYczkb75-uVSC2etSZEouVEfkz9g-qmB6yVwfQ5cl8D1ErhemObMUNGGnUt_Dfdf6DelHq1w</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Murugan, Kadarkarai</creator><creator>Anitha, Jaganathan</creator><creator>Suresh, Udaiyan</creator><creator>Rajaganesh, Rajapandian</creator><creator>Panneerselvam, Chellasamy</creator><creator>Aziz, Al Thabiani</creator><creator>Tseng, Li-Chun</creator><creator>Kalimuthu, Kandasamy</creator><creator>Alsalhi, Mohamad Saleh</creator><creator>Devanesan, Sandhanasamy</creator><creator>Nicoletti, Marcello</creator><creator>Sarkar, Santosh Kumar</creator><creator>Benelli, Giovanni</creator><creator>Hwang, Jiang-Shiou</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QH</scope><scope>7SN</scope><scope>7SS</scope><scope>7U7</scope><scope>7UA</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope></search><sort><creationdate>20170801</creationdate><title>Chitosan-fabricated Ag nanoparticles and larvivorous fishes: a novel route to control the coastal malaria vector Anopheles sundaicus?</title><author>Murugan, Kadarkarai ; Anitha, Jaganathan ; Suresh, Udaiyan ; Rajaganesh, Rajapandian ; Panneerselvam, Chellasamy ; Aziz, Al Thabiani ; Tseng, Li-Chun ; Kalimuthu, Kandasamy ; Alsalhi, Mohamad Saleh ; Devanesan, Sandhanasamy ; Nicoletti, Marcello ; Sarkar, Santosh Kumar ; Benelli, Giovanni ; Hwang, Jiang-Shiou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-d1685cb06d41857ed0a834d9a8bdd6a66ae79422fff257e633d10463d2c428e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agar</topic><topic>Analytical methods</topic><topic>Anopheles</topic><topic>Anopheles sundaicus</topic><topic>Antibacterial agents</topic><topic>Aquatic insects</topic><topic>Assaying</topic><topic>Bacillus subtilis</topic><topic>Bacteria</topic><topic>Biomedical and Life Sciences</topic><topic>Capping</topic><topic>Carassius auratus</topic><topic>Chitosan</topic><topic>Coastal environments</topic><topic>Control</topic><topic>Dengue fever</topic><topic>Diffusion</topic><topic>Dye dispersion</topic><topic>E coli</topic><topic>Ecology</topic><topic>Efficiency</topic><topic>Encephalitis</topic><topic>Escherichia coli</topic><topic>Fever</topic><topic>Filariasis</topic><topic>Fourier transforms</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Human diseases</topic><topic>Hydrothermal vent ecosystems</topic><topic>Infrared spectroscopy</topic><topic>Insecticides</topic><topic>Interspecific relationships</topic><topic>Klebsiella</topic><topic>Klebsiella pneumoniae</topic><topic>Laboratories</topic><topic>Larvae</topic><topic>Life Sciences</topic><topic>Malaria</topic><topic>Males</topic><topic>Marine crustaceans</topic><topic>Mosquitoes</topic><topic>Nanoparticles</topic><topic>Pathogenic bacteria</topic><topic>Pneumonia</topic><topic>Predation</topic><topic>Primary Research Paper</topic><topic>Properties</topic><topic>Proteus vulgaris</topic><topic>Pupae</topic><topic>Shells</topic><topic>Silver</topic><topic>Tropical diseases</topic><topic>Ultraviolet radiation</topic><topic>Ultraviolet spectroscopy</topic><topic>Ultraviolet-visible spectroscopy</topic><topic>Vector-borne diseases</topic><topic>Vectors</topic><topic>Viral diseases</topic><topic>Viruses</topic><topic>Xenograpsus testudinatus</topic><topic>Yellow fever</topic><topic>Zika virus</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murugan, Kadarkarai</creatorcontrib><creatorcontrib>Anitha, Jaganathan</creatorcontrib><creatorcontrib>Suresh, Udaiyan</creatorcontrib><creatorcontrib>Rajaganesh, Rajapandian</creatorcontrib><creatorcontrib>Panneerselvam, Chellasamy</creatorcontrib><creatorcontrib>Aziz, Al Thabiani</creatorcontrib><creatorcontrib>Tseng, Li-Chun</creatorcontrib><creatorcontrib>Kalimuthu, Kandasamy</creatorcontrib><creatorcontrib>Alsalhi, Mohamad Saleh</creatorcontrib><creatorcontrib>Devanesan, Sandhanasamy</creatorcontrib><creatorcontrib>Nicoletti, Marcello</creatorcontrib><creatorcontrib>Sarkar, Santosh Kumar</creatorcontrib><creatorcontrib>Benelli, Giovanni</creatorcontrib><creatorcontrib>Hwang, Jiang-Shiou</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><jtitle>Hydrobiologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murugan, Kadarkarai</au><au>Anitha, Jaganathan</au><au>Suresh, Udaiyan</au><au>Rajaganesh, Rajapandian</au><au>Panneerselvam, Chellasamy</au><au>Aziz, Al Thabiani</au><au>Tseng, Li-Chun</au><au>Kalimuthu, Kandasamy</au><au>Alsalhi, Mohamad Saleh</au><au>Devanesan, Sandhanasamy</au><au>Nicoletti, Marcello</au><au>Sarkar, Santosh Kumar</au><au>Benelli, Giovanni</au><au>Hwang, Jiang-Shiou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chitosan-fabricated Ag nanoparticles and larvivorous fishes: a novel route to control the coastal malaria vector Anopheles sundaicus?</atitle><jtitle>Hydrobiologia</jtitle><stitle>Hydrobiologia</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>797</volume><issue>1</issue><spage>335</spage><epage>350</epage><pages>335-350</pages><issn>0018-8158</issn><eissn>1573-5117</eissn><abstract>Mosquitoes represent a key threat for millions of humans worldwide, since they act as vectors for malaria, dengue fever, yellow fever, Zika virus, filariasis, and encephalitis. In this study, we tested chitosan-synthesized silver nanoparticles (Ch–AgNP) using male crab shells as a source of chitosan, which acted as a reducing and capping agent. Ch–AgNP were characterized by UV–Vis spectroscopy, FTIR, SEM, EDX, and XRD. Chitosan and Ch–AgNP were tested against larvae and pupae of the malaria vector Anopheles sundaicus under laboratory and field conditions. Antibacterial properties of Ch–AgNP were tested on Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae , and Proteus vulgaris using the agar disk diffusion assay. The standard predation efficiency of the mosquito natural enemy Carassius auratus in laboratory conditions was 60.80 (on larva II) and 19.68 individuals (on larva III) per day, while post-treatment with sub-lethal doses of Ch–AgNP, the predation efficiency was boosted to 72.00 (on larva II) and 25.80 individuals (on larva III). Overall, Ch–AgNP fabricated using chitosan extracted from the male crab shells of the hydrothermal vent species Xenograpsus testudinatus may offer a novel and safer control strategy against A. sundaicus mosquito vectors, as well as against Gram-negative and Gram-positive pathogenic bacteria.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10750-017-3196-1</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-8158
ispartof Hydrobiologia, 2017-08, Vol.797 (1), p.335-350
issn 0018-8158
1573-5117
language eng
recordid cdi_proquest_journals_1912907178
source Springer Nature - Complete Springer Journals
subjects Agar
Analytical methods
Anopheles
Anopheles sundaicus
Antibacterial agents
Aquatic insects
Assaying
Bacillus subtilis
Bacteria
Biomedical and Life Sciences
Capping
Carassius auratus
Chitosan
Coastal environments
Control
Dengue fever
Diffusion
Dye dispersion
E coli
Ecology
Efficiency
Encephalitis
Escherichia coli
Fever
Filariasis
Fourier transforms
Freshwater & Marine Ecology
Human diseases
Hydrothermal vent ecosystems
Infrared spectroscopy
Insecticides
Interspecific relationships
Klebsiella
Klebsiella pneumoniae
Laboratories
Larvae
Life Sciences
Malaria
Males
Marine crustaceans
Mosquitoes
Nanoparticles
Pathogenic bacteria
Pneumonia
Predation
Primary Research Paper
Properties
Proteus vulgaris
Pupae
Shells
Silver
Tropical diseases
Ultraviolet radiation
Ultraviolet spectroscopy
Ultraviolet-visible spectroscopy
Vector-borne diseases
Vectors
Viral diseases
Viruses
Xenograpsus testudinatus
Yellow fever
Zika virus
Zoology
title Chitosan-fabricated Ag nanoparticles and larvivorous fishes: a novel route to control the coastal malaria vector Anopheles sundaicus?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A12%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chitosan-fabricated%20Ag%20nanoparticles%20and%20larvivorous%20fishes:%20a%20novel%20route%20to%20control%20the%20coastal%20malaria%20vector%20Anopheles%20sundaicus?&rft.jtitle=Hydrobiologia&rft.au=Murugan,%20Kadarkarai&rft.date=2017-08-01&rft.volume=797&rft.issue=1&rft.spage=335&rft.epage=350&rft.pages=335-350&rft.issn=0018-8158&rft.eissn=1573-5117&rft_id=info:doi/10.1007/s10750-017-3196-1&rft_dat=%3Cgale_proqu%3EA496662171%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1912907178&rft_id=info:pmid/&rft_galeid=A496662171&rfr_iscdi=true