Effect of Cooling Rates on the Solidification and Microstructure of Rapidly Solidified Mg70.8Zn28Nd1.2 Quasicrystal Alloy
The influence of cooling rates on the solidification and microstructure of rapidly solidified quasicrystal alloy Mg70.8Zn28Nd1.2(at.%) was investigated. The microstructure, phase constitution, phase transition and phase structure of the alloys were examined by means of scanning electron microscopy,...
Gespeichert in:
Veröffentlicht in: | Materials science forum 2017-06, Vol.898, p.246-253 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 253 |
---|---|
container_issue | |
container_start_page | 246 |
container_title | Materials science forum |
container_volume | 898 |
creator | Teng, Xin Ying Xu, Shu Min Zhang, Jin Yang Ge, Xing Jing |
description | The influence of cooling rates on the solidification and microstructure of rapidly solidified quasicrystal alloy Mg70.8Zn28Nd1.2(at.%) was investigated. The microstructure, phase constitution, phase transition and phase structure of the alloys were examined by means of scanning electron microscopy, x-ray diffraction, energy dispersive spectrometer, differential scanning calorimetry. The experimental results showed that the phase composition of as-cast Mg70.8Zn28Nd1.2 alloy includes quasicrystal I-phase and Mg7Zn3 phase. For the rapidly solidified alloy ribbons, when the speed is not higher than 400 r/min, the microstructure includes I-phase, Mg7Zn3 phase and α-Mg phase. When the speed is at the range of 400-2000r/min, the Mg7Zn3 phase disappears and only quasicrystal with α-Mg phase exist. With the increase of cooling rate, the grain size decreases and there are a large number of microcrystals in the microstructure. When the speed reaches higher than 2500 r/min, amorphous phase appeared. Differential thermal analysis showed that quasicrystal exist at about 340°C. |
doi_str_mv | 10.4028/www.scientific.net/MSF.898.246 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1912778879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1912778879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2106-58b95858d51a4a1d949b4e1930bc596d9c5abad137ae5e871a9bb328daa553fc3</originalsourceid><addsrcrecordid>eNqNkMtKxDAUhoMoOF7eISC4a03Spk024jCMF_CCt42bcJqkTofajknK0Lc3w4i6dHXg8P_f4XwInVKS5oSJs_V6nXrd2C40daPTzoazu-fLVEiRsrzYQRNaFCyRJWe7aEIY5wnPy2IfHXi_JCSjghYTNM7r2uqA-xrP-r5tunf8BMF63Hc4LCx-jjuz4UNo4go6g-8a7Xof3KDD4Oym-QSrxrTjT9jG0HtJUvHWMXFvaMrw4wA-9kYfoMXTtu3HI7RXQ-vt8fc8RK-X85fZdXL7cHUzm94mmlFSJFxUkgsuDKeQAzUyl1VuqcxIpbksjNQcKjA0K8FyK0oKsqoyJgwA51mts0N0suWuXP85WB_Ush9cF08qKikrSyFKGVPn29TmN-9srVau-QA3KkrURreKutWvbhV1q6hbRd0q6o6Aiy0gOOh8sHrx587_EF8UZZIq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1912778879</pqid></control><display><type>article</type><title>Effect of Cooling Rates on the Solidification and Microstructure of Rapidly Solidified Mg70.8Zn28Nd1.2 Quasicrystal Alloy</title><source>Scientific.net Journals</source><creator>Teng, Xin Ying ; Xu, Shu Min ; Zhang, Jin Yang ; Ge, Xing Jing</creator><creatorcontrib>Teng, Xin Ying ; Xu, Shu Min ; Zhang, Jin Yang ; Ge, Xing Jing</creatorcontrib><description>The influence of cooling rates on the solidification and microstructure of rapidly solidified quasicrystal alloy Mg70.8Zn28Nd1.2(at.%) was investigated. The microstructure, phase constitution, phase transition and phase structure of the alloys were examined by means of scanning electron microscopy, x-ray diffraction, energy dispersive spectrometer, differential scanning calorimetry. The experimental results showed that the phase composition of as-cast Mg70.8Zn28Nd1.2 alloy includes quasicrystal I-phase and Mg7Zn3 phase. For the rapidly solidified alloy ribbons, when the speed is not higher than 400 r/min, the microstructure includes I-phase, Mg7Zn3 phase and α-Mg phase. When the speed is at the range of 400-2000r/min, the Mg7Zn3 phase disappears and only quasicrystal with α-Mg phase exist. With the increase of cooling rate, the grain size decreases and there are a large number of microcrystals in the microstructure. When the speed reaches higher than 2500 r/min, amorphous phase appeared. Differential thermal analysis showed that quasicrystal exist at about 340°C.</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>EISSN: 1662-9752</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.898.246</identifier><language>eng</language><publisher>Pfaffikon: Trans Tech Publications Ltd</publisher><subject>Alloys ; Constitution ; Cooling ; Cooling effects ; Cooling rate ; Differential scanning calorimetry ; Dispersion ; Grain size ; Microcrystals ; Microstructure ; Phase composition ; Phase transitions ; Rapid solidification ; Scanning electron microscopy ; Solid phases ; Thermal analysis ; X-ray diffraction</subject><ispartof>Materials science forum, 2017-06, Vol.898, p.246-253</ispartof><rights>2017 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jun 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4502?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Teng, Xin Ying</creatorcontrib><creatorcontrib>Xu, Shu Min</creatorcontrib><creatorcontrib>Zhang, Jin Yang</creatorcontrib><creatorcontrib>Ge, Xing Jing</creatorcontrib><title>Effect of Cooling Rates on the Solidification and Microstructure of Rapidly Solidified Mg70.8Zn28Nd1.2 Quasicrystal Alloy</title><title>Materials science forum</title><description>The influence of cooling rates on the solidification and microstructure of rapidly solidified quasicrystal alloy Mg70.8Zn28Nd1.2(at.%) was investigated. The microstructure, phase constitution, phase transition and phase structure of the alloys were examined by means of scanning electron microscopy, x-ray diffraction, energy dispersive spectrometer, differential scanning calorimetry. The experimental results showed that the phase composition of as-cast Mg70.8Zn28Nd1.2 alloy includes quasicrystal I-phase and Mg7Zn3 phase. For the rapidly solidified alloy ribbons, when the speed is not higher than 400 r/min, the microstructure includes I-phase, Mg7Zn3 phase and α-Mg phase. When the speed is at the range of 400-2000r/min, the Mg7Zn3 phase disappears and only quasicrystal with α-Mg phase exist. With the increase of cooling rate, the grain size decreases and there are a large number of microcrystals in the microstructure. When the speed reaches higher than 2500 r/min, amorphous phase appeared. Differential thermal analysis showed that quasicrystal exist at about 340°C.</description><subject>Alloys</subject><subject>Constitution</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Cooling rate</subject><subject>Differential scanning calorimetry</subject><subject>Dispersion</subject><subject>Grain size</subject><subject>Microcrystals</subject><subject>Microstructure</subject><subject>Phase composition</subject><subject>Phase transitions</subject><subject>Rapid solidification</subject><subject>Scanning electron microscopy</subject><subject>Solid phases</subject><subject>Thermal analysis</subject><subject>X-ray diffraction</subject><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkMtKxDAUhoMoOF7eISC4a03Spk024jCMF_CCt42bcJqkTofajknK0Lc3w4i6dHXg8P_f4XwInVKS5oSJs_V6nXrd2C40daPTzoazu-fLVEiRsrzYQRNaFCyRJWe7aEIY5wnPy2IfHXi_JCSjghYTNM7r2uqA-xrP-r5tunf8BMF63Hc4LCx-jjuz4UNo4go6g-8a7Xof3KDD4Oym-QSrxrTjT9jG0HtJUvHWMXFvaMrw4wA-9kYfoMXTtu3HI7RXQ-vt8fc8RK-X85fZdXL7cHUzm94mmlFSJFxUkgsuDKeQAzUyl1VuqcxIpbksjNQcKjA0K8FyK0oKsqoyJgwA51mts0N0suWuXP85WB_Ush9cF08qKikrSyFKGVPn29TmN-9srVau-QA3KkrURreKutWvbhV1q6hbRd0q6o6Aiy0gOOh8sHrx587_EF8UZZIq</recordid><startdate>20170619</startdate><enddate>20170619</enddate><creator>Teng, Xin Ying</creator><creator>Xu, Shu Min</creator><creator>Zhang, Jin Yang</creator><creator>Ge, Xing Jing</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20170619</creationdate><title>Effect of Cooling Rates on the Solidification and Microstructure of Rapidly Solidified Mg70.8Zn28Nd1.2 Quasicrystal Alloy</title><author>Teng, Xin Ying ; Xu, Shu Min ; Zhang, Jin Yang ; Ge, Xing Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2106-58b95858d51a4a1d949b4e1930bc596d9c5abad137ae5e871a9bb328daa553fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloys</topic><topic>Constitution</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Cooling rate</topic><topic>Differential scanning calorimetry</topic><topic>Dispersion</topic><topic>Grain size</topic><topic>Microcrystals</topic><topic>Microstructure</topic><topic>Phase composition</topic><topic>Phase transitions</topic><topic>Rapid solidification</topic><topic>Scanning electron microscopy</topic><topic>Solid phases</topic><topic>Thermal analysis</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teng, Xin Ying</creatorcontrib><creatorcontrib>Xu, Shu Min</creatorcontrib><creatorcontrib>Zhang, Jin Yang</creatorcontrib><creatorcontrib>Ge, Xing Jing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Materials science forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teng, Xin Ying</au><au>Xu, Shu Min</au><au>Zhang, Jin Yang</au><au>Ge, Xing Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Cooling Rates on the Solidification and Microstructure of Rapidly Solidified Mg70.8Zn28Nd1.2 Quasicrystal Alloy</atitle><jtitle>Materials science forum</jtitle><date>2017-06-19</date><risdate>2017</risdate><volume>898</volume><spage>246</spage><epage>253</epage><pages>246-253</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><abstract>The influence of cooling rates on the solidification and microstructure of rapidly solidified quasicrystal alloy Mg70.8Zn28Nd1.2(at.%) was investigated. The microstructure, phase constitution, phase transition and phase structure of the alloys were examined by means of scanning electron microscopy, x-ray diffraction, energy dispersive spectrometer, differential scanning calorimetry. The experimental results showed that the phase composition of as-cast Mg70.8Zn28Nd1.2 alloy includes quasicrystal I-phase and Mg7Zn3 phase. For the rapidly solidified alloy ribbons, when the speed is not higher than 400 r/min, the microstructure includes I-phase, Mg7Zn3 phase and α-Mg phase. When the speed is at the range of 400-2000r/min, the Mg7Zn3 phase disappears and only quasicrystal with α-Mg phase exist. With the increase of cooling rate, the grain size decreases and there are a large number of microcrystals in the microstructure. When the speed reaches higher than 2500 r/min, amorphous phase appeared. Differential thermal analysis showed that quasicrystal exist at about 340°C.</abstract><cop>Pfaffikon</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.898.246</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0255-5476 |
ispartof | Materials science forum, 2017-06, Vol.898, p.246-253 |
issn | 0255-5476 1662-9752 1662-9752 |
language | eng |
recordid | cdi_proquest_journals_1912778879 |
source | Scientific.net Journals |
subjects | Alloys Constitution Cooling Cooling effects Cooling rate Differential scanning calorimetry Dispersion Grain size Microcrystals Microstructure Phase composition Phase transitions Rapid solidification Scanning electron microscopy Solid phases Thermal analysis X-ray diffraction |
title | Effect of Cooling Rates on the Solidification and Microstructure of Rapidly Solidified Mg70.8Zn28Nd1.2 Quasicrystal Alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Cooling%20Rates%20on%20the%20Solidification%20and%20Microstructure%20of%20Rapidly%20Solidified%20Mg70.8Zn28Nd1.2%20Quasicrystal%20Alloy&rft.jtitle=Materials%20science%20forum&rft.au=Teng,%20Xin%20Ying&rft.date=2017-06-19&rft.volume=898&rft.spage=246&rft.epage=253&rft.pages=246-253&rft.issn=0255-5476&rft.eissn=1662-9752&rft_id=info:doi/10.4028/www.scientific.net/MSF.898.246&rft_dat=%3Cproquest_cross%3E1912778879%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1912778879&rft_id=info:pmid/&rfr_iscdi=true |