Effect of Rare-Earth Element Y on the Microstructure and Mechanical Properties of the Mg-6.0wt.%Zn-0.5wt.%Zr Alloy

The extruded Mg-6.0wt.%Zn-0.5wt.%Zr (ZK60) alloys with 0.5wt.% and 1.0wt.% Y additions were prepared. The microstructures and tensile properties of the alloys aged in different conditions were investigated. The results show that the specimen with 1.0wt.% Y additions and aged at 453K for 15 h had the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2017-06, Vol.898, p.91-96
Hauptverfasser: Liu, Yun Teng, Liu, Yu, Zhou, Ji Xue, Tang, Shou Qiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 96
container_issue
container_start_page 91
container_title Materials science forum
container_volume 898
creator Liu, Yun Teng
Liu, Yu
Zhou, Ji Xue
Tang, Shou Qiu
description The extruded Mg-6.0wt.%Zn-0.5wt.%Zr (ZK60) alloys with 0.5wt.% and 1.0wt.% Y additions were prepared. The microstructures and tensile properties of the alloys aged in different conditions were investigated. The results show that the specimen with 1.0wt.% Y additions and aged at 453K for 15 h had the best tensile strength. The ultimate tensile strength and yield strength reached 365MPa and 352MPa, respectively. The grain refinement, the formation of the fine dispersed Mg-Zn particles and the W-Mg3Zn3Y2 ternary phase may be the main reasons for the improvement. The average grain size reached to ~ 3μm. The size of the fine and dispersed particles was only several nanometers and the particle number density (Nv) was very high. The crystallographic characteristics of the ternary W-Mg3Zn3Y2 phase were studied by the transmission electron microscope and selected area electron diffraction techniques. The crystallographic orientation relationship between the W phase and the α-Mg matrix is identified as: [2 0]α//[ ]w, (0002)α plane near parallel to the (220)w plane with a 3.5 degree angle difference. This orientation relationship has rarely been studied and reported.
doi_str_mv 10.4028/www.scientific.net/MSF.898.91
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1912778693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1912778693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2681-aa18cba3a82d50edbb88ed59848e914f7926ec0a00d5bc1703391be1721914c83</originalsourceid><addsrcrecordid>eNqNkFtLwzAUx4MoOKffISB7bJekt-RBZIxNhQ3Fy4O-hDQ9dR1dO5OUsm9vtgn66NM5cP4Xzg-hESVhTBgf930fWl1B46qy0mEDbrx8mYdc8FDQEzSgacoCkSXsFA0IS5IgibP0HF1YuyYkopymA2RmZQna4bbEz8pAMFPGrfCsho2Pxe-4bbBbAV5W2rTWmU67zgBWTYGXoFeqqbSq8ZNpt2BcBXafc9B_BmlIeheOPpqAhMlhM3hS1-3uEp2VqrZw9TOH6G0-e53eB4vHu4fpZBFolnIaKEW5zlWkOCsSAkWecw5FInjMQdC4zARLQRNFSJHkmmYkigTNgWaM-rPm0RBdH3O3pv3qwDq5bjvT-ErpFSzLeCoir7o5qvYPWgOl3Jpqo8xOUiL3mKXHLH8xS49ZeszSY5aCev_t0e-MaqzzUP7U_CvhG2qNjTk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1912778693</pqid></control><display><type>article</type><title>Effect of Rare-Earth Element Y on the Microstructure and Mechanical Properties of the Mg-6.0wt.%Zn-0.5wt.%Zr Alloy</title><source>Scientific.net Journals</source><creator>Liu, Yun Teng ; Liu, Yu ; Zhou, Ji Xue ; Tang, Shou Qiu</creator><creatorcontrib>Liu, Yun Teng ; Liu, Yu ; Zhou, Ji Xue ; Tang, Shou Qiu</creatorcontrib><description>The extruded Mg-6.0wt.%Zn-0.5wt.%Zr (ZK60) alloys with 0.5wt.% and 1.0wt.% Y additions were prepared. The microstructures and tensile properties of the alloys aged in different conditions were investigated. The results show that the specimen with 1.0wt.% Y additions and aged at 453K for 15 h had the best tensile strength. The ultimate tensile strength and yield strength reached 365MPa and 352MPa, respectively. The grain refinement, the formation of the fine dispersed Mg-Zn particles and the W-Mg3Zn3Y2 ternary phase may be the main reasons for the improvement. The average grain size reached to ~ 3μm. The size of the fine and dispersed particles was only several nanometers and the particle number density (Nv) was very high. The crystallographic characteristics of the ternary W-Mg3Zn3Y2 phase were studied by the transmission electron microscope and selected area electron diffraction techniques. The crystallographic orientation relationship between the W phase and the α-Mg matrix is identified as: [2 0]α//[ ]w, (0002)α plane near parallel to the (220)w plane with a 3.5 degree angle difference. This orientation relationship has rarely been studied and reported.</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>EISSN: 1662-9752</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.898.91</identifier><language>eng</language><publisher>Pfaffikon: Trans Tech Publications Ltd</publisher><subject>Alloying additive ; Alloys ; Crystallography ; Dispersion ; Dispersions ; Electron diffraction ; Extrusion ; Grain refinement ; Grain size ; Magnesium base alloys ; Mechanical properties ; Microstructure ; Rare earth elements ; Tensile properties ; Tensile strength ; Ternary systems ; Ultimate tensile strength ; Yield strength ; Yttrium ; Zinc base alloys ; Zirconium</subject><ispartof>Materials science forum, 2017-06, Vol.898, p.91-96</ispartof><rights>2017 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jun 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2681-aa18cba3a82d50edbb88ed59848e914f7926ec0a00d5bc1703391be1721914c83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4502?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Yun Teng</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Zhou, Ji Xue</creatorcontrib><creatorcontrib>Tang, Shou Qiu</creatorcontrib><title>Effect of Rare-Earth Element Y on the Microstructure and Mechanical Properties of the Mg-6.0wt.%Zn-0.5wt.%Zr Alloy</title><title>Materials science forum</title><description>The extruded Mg-6.0wt.%Zn-0.5wt.%Zr (ZK60) alloys with 0.5wt.% and 1.0wt.% Y additions were prepared. The microstructures and tensile properties of the alloys aged in different conditions were investigated. The results show that the specimen with 1.0wt.% Y additions and aged at 453K for 15 h had the best tensile strength. The ultimate tensile strength and yield strength reached 365MPa and 352MPa, respectively. The grain refinement, the formation of the fine dispersed Mg-Zn particles and the W-Mg3Zn3Y2 ternary phase may be the main reasons for the improvement. The average grain size reached to ~ 3μm. The size of the fine and dispersed particles was only several nanometers and the particle number density (Nv) was very high. The crystallographic characteristics of the ternary W-Mg3Zn3Y2 phase were studied by the transmission electron microscope and selected area electron diffraction techniques. The crystallographic orientation relationship between the W phase and the α-Mg matrix is identified as: [2 0]α//[ ]w, (0002)α plane near parallel to the (220)w plane with a 3.5 degree angle difference. This orientation relationship has rarely been studied and reported.</description><subject>Alloying additive</subject><subject>Alloys</subject><subject>Crystallography</subject><subject>Dispersion</subject><subject>Dispersions</subject><subject>Electron diffraction</subject><subject>Extrusion</subject><subject>Grain refinement</subject><subject>Grain size</subject><subject>Magnesium base alloys</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Rare earth elements</subject><subject>Tensile properties</subject><subject>Tensile strength</subject><subject>Ternary systems</subject><subject>Ultimate tensile strength</subject><subject>Yield strength</subject><subject>Yttrium</subject><subject>Zinc base alloys</subject><subject>Zirconium</subject><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkFtLwzAUx4MoOKffISB7bJekt-RBZIxNhQ3Fy4O-hDQ9dR1dO5OUsm9vtgn66NM5cP4Xzg-hESVhTBgf930fWl1B46qy0mEDbrx8mYdc8FDQEzSgacoCkSXsFA0IS5IgibP0HF1YuyYkopymA2RmZQna4bbEz8pAMFPGrfCsho2Pxe-4bbBbAV5W2rTWmU67zgBWTYGXoFeqqbSq8ZNpt2BcBXafc9B_BmlIeheOPpqAhMlhM3hS1-3uEp2VqrZw9TOH6G0-e53eB4vHu4fpZBFolnIaKEW5zlWkOCsSAkWecw5FInjMQdC4zARLQRNFSJHkmmYkigTNgWaM-rPm0RBdH3O3pv3qwDq5bjvT-ErpFSzLeCoir7o5qvYPWgOl3Jpqo8xOUiL3mKXHLH8xS49ZeszSY5aCev_t0e-MaqzzUP7U_CvhG2qNjTk</recordid><startdate>20170619</startdate><enddate>20170619</enddate><creator>Liu, Yun Teng</creator><creator>Liu, Yu</creator><creator>Zhou, Ji Xue</creator><creator>Tang, Shou Qiu</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20170619</creationdate><title>Effect of Rare-Earth Element Y on the Microstructure and Mechanical Properties of the Mg-6.0wt.%Zn-0.5wt.%Zr Alloy</title><author>Liu, Yun Teng ; Liu, Yu ; Zhou, Ji Xue ; Tang, Shou Qiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2681-aa18cba3a82d50edbb88ed59848e914f7926ec0a00d5bc1703391be1721914c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloying additive</topic><topic>Alloys</topic><topic>Crystallography</topic><topic>Dispersion</topic><topic>Dispersions</topic><topic>Electron diffraction</topic><topic>Extrusion</topic><topic>Grain refinement</topic><topic>Grain size</topic><topic>Magnesium base alloys</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Rare earth elements</topic><topic>Tensile properties</topic><topic>Tensile strength</topic><topic>Ternary systems</topic><topic>Ultimate tensile strength</topic><topic>Yield strength</topic><topic>Yttrium</topic><topic>Zinc base alloys</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yun Teng</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Zhou, Ji Xue</creatorcontrib><creatorcontrib>Tang, Shou Qiu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Materials science forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yun Teng</au><au>Liu, Yu</au><au>Zhou, Ji Xue</au><au>Tang, Shou Qiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Rare-Earth Element Y on the Microstructure and Mechanical Properties of the Mg-6.0wt.%Zn-0.5wt.%Zr Alloy</atitle><jtitle>Materials science forum</jtitle><date>2017-06-19</date><risdate>2017</risdate><volume>898</volume><spage>91</spage><epage>96</epage><pages>91-96</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><abstract>The extruded Mg-6.0wt.%Zn-0.5wt.%Zr (ZK60) alloys with 0.5wt.% and 1.0wt.% Y additions were prepared. The microstructures and tensile properties of the alloys aged in different conditions were investigated. The results show that the specimen with 1.0wt.% Y additions and aged at 453K for 15 h had the best tensile strength. The ultimate tensile strength and yield strength reached 365MPa and 352MPa, respectively. The grain refinement, the formation of the fine dispersed Mg-Zn particles and the W-Mg3Zn3Y2 ternary phase may be the main reasons for the improvement. The average grain size reached to ~ 3μm. The size of the fine and dispersed particles was only several nanometers and the particle number density (Nv) was very high. The crystallographic characteristics of the ternary W-Mg3Zn3Y2 phase were studied by the transmission electron microscope and selected area electron diffraction techniques. The crystallographic orientation relationship between the W phase and the α-Mg matrix is identified as: [2 0]α//[ ]w, (0002)α plane near parallel to the (220)w plane with a 3.5 degree angle difference. This orientation relationship has rarely been studied and reported.</abstract><cop>Pfaffikon</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.898.91</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0255-5476
ispartof Materials science forum, 2017-06, Vol.898, p.91-96
issn 0255-5476
1662-9752
1662-9752
language eng
recordid cdi_proquest_journals_1912778693
source Scientific.net Journals
subjects Alloying additive
Alloys
Crystallography
Dispersion
Dispersions
Electron diffraction
Extrusion
Grain refinement
Grain size
Magnesium base alloys
Mechanical properties
Microstructure
Rare earth elements
Tensile properties
Tensile strength
Ternary systems
Ultimate tensile strength
Yield strength
Yttrium
Zinc base alloys
Zirconium
title Effect of Rare-Earth Element Y on the Microstructure and Mechanical Properties of the Mg-6.0wt.%Zn-0.5wt.%Zr Alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Rare-Earth%20Element%20Y%20on%20the%20Microstructure%20and%20Mechanical%20Properties%20of%20the%20Mg-6.0wt.%25Zn-0.5wt.%25Zr%20Alloy&rft.jtitle=Materials%20science%20forum&rft.au=Liu,%20Yun%20Teng&rft.date=2017-06-19&rft.volume=898&rft.spage=91&rft.epage=96&rft.pages=91-96&rft.issn=0255-5476&rft.eissn=1662-9752&rft_id=info:doi/10.4028/www.scientific.net/MSF.898.91&rft_dat=%3Cproquest_cross%3E1912778693%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1912778693&rft_id=info:pmid/&rfr_iscdi=true