The effects of different possible modes of uniaxial strain on the tunability of electronic and band structures in MoS 2 monolayer nanosheet via first-principles density functional theory

Ab-initio density functional theory-based calculations have been performed on monolayer (ML) MoS 2 nanosheet to study the variation of its electronic properties with the application of uniaxial tensile and compressive strain along its two non-equivalent lattice directions, namely, the zig-zag and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pramāṇa 2017-01, Vol.89 (1), p.1-7
Hauptverfasser: Dimple, Nityasagar Jena, Shounak Dhananjay Behere, De Sarkar, Abir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 1
container_start_page 1
container_title Pramāṇa
container_volume 89
creator Dimple
Nityasagar Jena
Shounak Dhananjay Behere
De Sarkar, Abir
description Ab-initio density functional theory-based calculations have been performed on monolayer (ML) MoS 2 nanosheet to study the variation of its electronic properties with the application of uniaxial tensile and compressive strain along its two non-equivalent lattice directions, namely, the zig-zag and the arm-chair directions. Among all the strain types considered in this study, uniaxial tensile strain applied along the zig-zag direction is found to be the most efficacious, inducing a greater tunability in the band gap over a large energy range (from 1.689 to 0.772 eV corresponding to 0–9% of applied strain), followed by uniaxial tensile strain along arm-chair direction. In contrast, the ML– MoS 2 nanosheet is found to be less sensitive to the compressive strain applied uniaxially along both the arm-chair as well as zig-zag directions. Moreover, the charges on Mo and S atoms are not found to undergo considerable changes under the application of uniaxial strain, as the atomic motion along the other direction is free from any constraint.
doi_str_mv 10.1007/s12043-017-1395-y
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1911223710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1911223710</sourcerecordid><originalsourceid>FETCH-proquest_journals_19112237103</originalsourceid><addsrcrecordid>eNqNjU1OxDAMRiMEEsPPAdhZYl2Im45K1wjEhhWzH6VtqskoOCVOEL0ap8NFHICNbcnvfZ9SN6jvUOv2nrHWjak0thWablstJ2qju9ZULSKeym10UzX1Q3euLpiPWmPXmO1Gfe8ODtw0uSEzxAlGL3dylGGOzL4PDt7j6H5_hbz98jYA52Q9QSTIYudCtvfB52WFXJCoFMkPYGmEfh3ClyGXJDGivcY3qCWVYrCLS0CWIh-cy_DpLUw-ca7m5GnwcxBjdMRr9lRoyD6S9EtrTMuVOptsYHf9ty_V7fPT7vFF5PhRHOf9MZYkPO-xQ6xr06I2_6N-AKsLbg4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1911223710</pqid></control><display><type>article</type><title>The effects of different possible modes of uniaxial strain on the tunability of electronic and band structures in MoS 2 monolayer nanosheet via first-principles density functional theory</title><source>Indian Academy of Sciences</source><source>Springer Nature - Complete Springer Journals</source><creator>Dimple ; Nityasagar Jena ; Shounak Dhananjay Behere ; De Sarkar, Abir</creator><creatorcontrib>Dimple ; Nityasagar Jena ; Shounak Dhananjay Behere ; De Sarkar, Abir</creatorcontrib><description>Ab-initio density functional theory-based calculations have been performed on monolayer (ML) MoS 2 nanosheet to study the variation of its electronic properties with the application of uniaxial tensile and compressive strain along its two non-equivalent lattice directions, namely, the zig-zag and the arm-chair directions. Among all the strain types considered in this study, uniaxial tensile strain applied along the zig-zag direction is found to be the most efficacious, inducing a greater tunability in the band gap over a large energy range (from 1.689 to 0.772 eV corresponding to 0–9% of applied strain), followed by uniaxial tensile strain along arm-chair direction. In contrast, the ML– MoS 2 nanosheet is found to be less sensitive to the compressive strain applied uniaxially along both the arm-chair as well as zig-zag directions. Moreover, the charges on Mo and S atoms are not found to undergo considerable changes under the application of uniaxial strain, as the atomic motion along the other direction is free from any constraint.</description><identifier>ISSN: 0304-4289</identifier><identifier>EISSN: 0973-7111</identifier><identifier>DOI: 10.1007/s12043-017-1395-y</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Compressive properties ; Deformation ; Density functional theory ; Electronic properties ; Energy gap ; Lattice vibration ; Mathematical analysis ; Nanosheets</subject><ispartof>Pramāṇa, 2017-01, Vol.89 (1), p.1-7</ispartof><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dimple</creatorcontrib><creatorcontrib>Nityasagar Jena</creatorcontrib><creatorcontrib>Shounak Dhananjay Behere</creatorcontrib><creatorcontrib>De Sarkar, Abir</creatorcontrib><title>The effects of different possible modes of uniaxial strain on the tunability of electronic and band structures in MoS 2 monolayer nanosheet via first-principles density functional theory</title><title>Pramāṇa</title><description>Ab-initio density functional theory-based calculations have been performed on monolayer (ML) MoS 2 nanosheet to study the variation of its electronic properties with the application of uniaxial tensile and compressive strain along its two non-equivalent lattice directions, namely, the zig-zag and the arm-chair directions. Among all the strain types considered in this study, uniaxial tensile strain applied along the zig-zag direction is found to be the most efficacious, inducing a greater tunability in the band gap over a large energy range (from 1.689 to 0.772 eV corresponding to 0–9% of applied strain), followed by uniaxial tensile strain along arm-chair direction. In contrast, the ML– MoS 2 nanosheet is found to be less sensitive to the compressive strain applied uniaxially along both the arm-chair as well as zig-zag directions. Moreover, the charges on Mo and S atoms are not found to undergo considerable changes under the application of uniaxial strain, as the atomic motion along the other direction is free from any constraint.</description><subject>Compressive properties</subject><subject>Deformation</subject><subject>Density functional theory</subject><subject>Electronic properties</subject><subject>Energy gap</subject><subject>Lattice vibration</subject><subject>Mathematical analysis</subject><subject>Nanosheets</subject><issn>0304-4289</issn><issn>0973-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqNjU1OxDAMRiMEEsPPAdhZYl2Im45K1wjEhhWzH6VtqskoOCVOEL0ap8NFHICNbcnvfZ9SN6jvUOv2nrHWjak0thWablstJ2qju9ZULSKeym10UzX1Q3euLpiPWmPXmO1Gfe8ODtw0uSEzxAlGL3dylGGOzL4PDt7j6H5_hbz98jYA52Q9QSTIYudCtvfB52WFXJCoFMkPYGmEfh3ClyGXJDGivcY3qCWVYrCLS0CWIh-cy_DpLUw-ca7m5GnwcxBjdMRr9lRoyD6S9EtrTMuVOptsYHf9ty_V7fPT7vFF5PhRHOf9MZYkPO-xQ6xr06I2_6N-AKsLbg4</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Dimple</creator><creator>Nityasagar Jena</creator><creator>Shounak Dhananjay Behere</creator><creator>De Sarkar, Abir</creator><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20170101</creationdate><title>The effects of different possible modes of uniaxial strain on the tunability of electronic and band structures in MoS 2 monolayer nanosheet via first-principles density functional theory</title><author>Dimple ; Nityasagar Jena ; Shounak Dhananjay Behere ; De Sarkar, Abir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_19112237103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Compressive properties</topic><topic>Deformation</topic><topic>Density functional theory</topic><topic>Electronic properties</topic><topic>Energy gap</topic><topic>Lattice vibration</topic><topic>Mathematical analysis</topic><topic>Nanosheets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimple</creatorcontrib><creatorcontrib>Nityasagar Jena</creatorcontrib><creatorcontrib>Shounak Dhananjay Behere</creatorcontrib><creatorcontrib>De Sarkar, Abir</creatorcontrib><jtitle>Pramāṇa</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dimple</au><au>Nityasagar Jena</au><au>Shounak Dhananjay Behere</au><au>De Sarkar, Abir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of different possible modes of uniaxial strain on the tunability of electronic and band structures in MoS 2 monolayer nanosheet via first-principles density functional theory</atitle><jtitle>Pramāṇa</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>89</volume><issue>1</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0304-4289</issn><eissn>0973-7111</eissn><abstract>Ab-initio density functional theory-based calculations have been performed on monolayer (ML) MoS 2 nanosheet to study the variation of its electronic properties with the application of uniaxial tensile and compressive strain along its two non-equivalent lattice directions, namely, the zig-zag and the arm-chair directions. Among all the strain types considered in this study, uniaxial tensile strain applied along the zig-zag direction is found to be the most efficacious, inducing a greater tunability in the band gap over a large energy range (from 1.689 to 0.772 eV corresponding to 0–9% of applied strain), followed by uniaxial tensile strain along arm-chair direction. In contrast, the ML– MoS 2 nanosheet is found to be less sensitive to the compressive strain applied uniaxially along both the arm-chair as well as zig-zag directions. Moreover, the charges on Mo and S atoms are not found to undergo considerable changes under the application of uniaxial strain, as the atomic motion along the other direction is free from any constraint.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s12043-017-1395-y</doi></addata></record>
fulltext fulltext
identifier ISSN: 0304-4289
ispartof Pramāṇa, 2017-01, Vol.89 (1), p.1-7
issn 0304-4289
0973-7111
language eng
recordid cdi_proquest_journals_1911223710
source Indian Academy of Sciences; Springer Nature - Complete Springer Journals
subjects Compressive properties
Deformation
Density functional theory
Electronic properties
Energy gap
Lattice vibration
Mathematical analysis
Nanosheets
title The effects of different possible modes of uniaxial strain on the tunability of electronic and band structures in MoS 2 monolayer nanosheet via first-principles density functional theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A53%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20different%20possible%20modes%20of%20uniaxial%20strain%20on%20the%20tunability%20of%20electronic%20and%20band%20structures%20in%20MoS%202%20monolayer%20nanosheet%20via%20first-principles%20density%20functional%20theory&rft.jtitle=Prama%CC%84n%CC%A3a&rft.au=Dimple&rft.date=2017-01-01&rft.volume=89&rft.issue=1&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0304-4289&rft.eissn=0973-7111&rft_id=info:doi/10.1007/s12043-017-1395-y&rft_dat=%3Cproquest%3E1911223710%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1911223710&rft_id=info:pmid/&rfr_iscdi=true