Decentralized control of multi-robot partially observable Markov decision processes using belief space macro-actions
This work focuses on solving general multi-robot planning problems in continuous spaces with partial observability given a high-level domain description. Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) are general models for multi-robot coordination problems. However, repre...
Gespeichert in:
Veröffentlicht in: | The International journal of robotics research 2017-02, Vol.36 (2), p.231-258 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 258 |
---|---|
container_issue | 2 |
container_start_page | 231 |
container_title | The International journal of robotics research |
container_volume | 36 |
creator | Omidshafiei, Shayegan Agha–Mohammadi, Ali–Akbar Amato, Christopher Liu, Shih–Yuan How, Jonathan P Vian, John |
description | This work focuses on solving general multi-robot planning problems in continuous spaces with partial observability given a high-level domain description. Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) are general models for multi-robot coordination problems. However, representing and solving Dec-POMDPs is often intractable for large problems. This work extends the Dec-POMDP model to the Decentralized Partially Observable Semi-Markov Decision Process (Dec-POSMDP) to take advantage of the high-level representations that are natural for multi-robot problems and to facilitate scalable solutions to large discrete and continuous problems. The Dec-POSMDP formulation uses task macro-actions created from lower-level local actions that allow for asynchronous decision-making by the robots, which is crucial in multi-robot domains. This transformation from Dec-POMDPs to Dec-POSMDPs with a finite set of automatically-generated macro-actions allows use of efficient discrete-space search algorithms to solve them. The paper presents algorithms for solving Dec-POSMDPs, which are more scalable than previous methods since they can incorporate closed-loop belief space macro-actions in planning. These macro-actions are automatically constructed to produce robust solutions. The proposed algorithms are then evaluated on a complex multi-robot package delivery problem under uncertainty, showing that our approach can naturally represent realistic problems and provide high-quality solutions for large-scale problems. |
doi_str_mv | 10.1177/0278364917692864 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1910845230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0278364917692864</sage_id><sourcerecordid>1910845230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-e9dbd63719a77d5bd3b598f6e47a3a2a097a5bedb3e3ea6c9a1bf4f0b58af03c3</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaLgunr3GPBcTZq2aY6yfsKKFz2XSTpZumabmqQL66-3y3oQwdMM8z7m8Qi55OyacylvWC5rURWKy0rldVUckRmXBc_EdDgmsz2c7fFTchbjmjEmKqZmJN2hwT4FcN0XttT4afeOeks3o0tdFrz2iQ4QUgfO7ajXEcMWtEP6AuHDb2mLpoud7-kQvMEYMdIxdv2KanQdWhoHMEg3YILPwKSJGc_JiQUX8eJnzsn7w_3b4ilbvj4-L26XmRFMpQxVq9tKSK5AyrbUrdClqm2FhQQBOTAlodTYaoECoTIKuLaFZbqswTJhxJxcHXynaJ8jxtSs_Rj66WXDFWd1UeaCTSx2YE0JYwxomyF0Gwi7hrNm323zt9tJkh0kEVb4y_Q__jdqNHx-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910845230</pqid></control><display><type>article</type><title>Decentralized control of multi-robot partially observable Markov decision processes using belief space macro-actions</title><source>Access via SAGE</source><creator>Omidshafiei, Shayegan ; Agha–Mohammadi, Ali–Akbar ; Amato, Christopher ; Liu, Shih–Yuan ; How, Jonathan P ; Vian, John</creator><creatorcontrib>Omidshafiei, Shayegan ; Agha–Mohammadi, Ali–Akbar ; Amato, Christopher ; Liu, Shih–Yuan ; How, Jonathan P ; Vian, John</creatorcontrib><description>This work focuses on solving general multi-robot planning problems in continuous spaces with partial observability given a high-level domain description. Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) are general models for multi-robot coordination problems. However, representing and solving Dec-POMDPs is often intractable for large problems. This work extends the Dec-POMDP model to the Decentralized Partially Observable Semi-Markov Decision Process (Dec-POSMDP) to take advantage of the high-level representations that are natural for multi-robot problems and to facilitate scalable solutions to large discrete and continuous problems. The Dec-POSMDP formulation uses task macro-actions created from lower-level local actions that allow for asynchronous decision-making by the robots, which is crucial in multi-robot domains. This transformation from Dec-POMDPs to Dec-POSMDPs with a finite set of automatically-generated macro-actions allows use of efficient discrete-space search algorithms to solve them. The paper presents algorithms for solving Dec-POSMDPs, which are more scalable than previous methods since they can incorporate closed-loop belief space macro-actions in planning. These macro-actions are automatically constructed to produce robust solutions. The proposed algorithms are then evaluated on a complex multi-robot package delivery problem under uncertainty, showing that our approach can naturally represent realistic problems and provide high-quality solutions for large-scale problems.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/0278364917692864</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Decentralized control ; Decision making ; Game theory ; Markov analysis ; Markov chains ; Mathematical models ; Observability (systems) ; Representations ; Robots ; Robustness ; Search algorithms ; Searching ; Uncertainty</subject><ispartof>The International journal of robotics research, 2017-02, Vol.36 (2), p.231-258</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-e9dbd63719a77d5bd3b598f6e47a3a2a097a5bedb3e3ea6c9a1bf4f0b58af03c3</citedby><cites>FETCH-LOGICAL-c309t-e9dbd63719a77d5bd3b598f6e47a3a2a097a5bedb3e3ea6c9a1bf4f0b58af03c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0278364917692864$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0278364917692864$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>315,781,785,21824,27929,27930,43626,43627</link.rule.ids></links><search><creatorcontrib>Omidshafiei, Shayegan</creatorcontrib><creatorcontrib>Agha–Mohammadi, Ali–Akbar</creatorcontrib><creatorcontrib>Amato, Christopher</creatorcontrib><creatorcontrib>Liu, Shih–Yuan</creatorcontrib><creatorcontrib>How, Jonathan P</creatorcontrib><creatorcontrib>Vian, John</creatorcontrib><title>Decentralized control of multi-robot partially observable Markov decision processes using belief space macro-actions</title><title>The International journal of robotics research</title><description>This work focuses on solving general multi-robot planning problems in continuous spaces with partial observability given a high-level domain description. Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) are general models for multi-robot coordination problems. However, representing and solving Dec-POMDPs is often intractable for large problems. This work extends the Dec-POMDP model to the Decentralized Partially Observable Semi-Markov Decision Process (Dec-POSMDP) to take advantage of the high-level representations that are natural for multi-robot problems and to facilitate scalable solutions to large discrete and continuous problems. The Dec-POSMDP formulation uses task macro-actions created from lower-level local actions that allow for asynchronous decision-making by the robots, which is crucial in multi-robot domains. This transformation from Dec-POMDPs to Dec-POSMDPs with a finite set of automatically-generated macro-actions allows use of efficient discrete-space search algorithms to solve them. The paper presents algorithms for solving Dec-POSMDPs, which are more scalable than previous methods since they can incorporate closed-loop belief space macro-actions in planning. These macro-actions are automatically constructed to produce robust solutions. The proposed algorithms are then evaluated on a complex multi-robot package delivery problem under uncertainty, showing that our approach can naturally represent realistic problems and provide high-quality solutions for large-scale problems.</description><subject>Algorithms</subject><subject>Decentralized control</subject><subject>Decision making</subject><subject>Game theory</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Observability (systems)</subject><subject>Representations</subject><subject>Robots</subject><subject>Robustness</subject><subject>Search algorithms</subject><subject>Searching</subject><subject>Uncertainty</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAQDaLgunr3GPBcTZq2aY6yfsKKFz2XSTpZumabmqQL66-3y3oQwdMM8z7m8Qi55OyacylvWC5rURWKy0rldVUckRmXBc_EdDgmsz2c7fFTchbjmjEmKqZmJN2hwT4FcN0XttT4afeOeks3o0tdFrz2iQ4QUgfO7ajXEcMWtEP6AuHDb2mLpoud7-kQvMEYMdIxdv2KanQdWhoHMEg3YILPwKSJGc_JiQUX8eJnzsn7w_3b4ilbvj4-L26XmRFMpQxVq9tKSK5AyrbUrdClqm2FhQQBOTAlodTYaoECoTIKuLaFZbqswTJhxJxcHXynaJ8jxtSs_Rj66WXDFWd1UeaCTSx2YE0JYwxomyF0Gwi7hrNm323zt9tJkh0kEVb4y_Q__jdqNHx-</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Omidshafiei, Shayegan</creator><creator>Agha–Mohammadi, Ali–Akbar</creator><creator>Amato, Christopher</creator><creator>Liu, Shih–Yuan</creator><creator>How, Jonathan P</creator><creator>Vian, John</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201702</creationdate><title>Decentralized control of multi-robot partially observable Markov decision processes using belief space macro-actions</title><author>Omidshafiei, Shayegan ; Agha–Mohammadi, Ali–Akbar ; Amato, Christopher ; Liu, Shih–Yuan ; How, Jonathan P ; Vian, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-e9dbd63719a77d5bd3b598f6e47a3a2a097a5bedb3e3ea6c9a1bf4f0b58af03c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Decentralized control</topic><topic>Decision making</topic><topic>Game theory</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Observability (systems)</topic><topic>Representations</topic><topic>Robots</topic><topic>Robustness</topic><topic>Search algorithms</topic><topic>Searching</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omidshafiei, Shayegan</creatorcontrib><creatorcontrib>Agha–Mohammadi, Ali–Akbar</creatorcontrib><creatorcontrib>Amato, Christopher</creatorcontrib><creatorcontrib>Liu, Shih–Yuan</creatorcontrib><creatorcontrib>How, Jonathan P</creatorcontrib><creatorcontrib>Vian, John</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omidshafiei, Shayegan</au><au>Agha–Mohammadi, Ali–Akbar</au><au>Amato, Christopher</au><au>Liu, Shih–Yuan</au><au>How, Jonathan P</au><au>Vian, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decentralized control of multi-robot partially observable Markov decision processes using belief space macro-actions</atitle><jtitle>The International journal of robotics research</jtitle><date>2017-02</date><risdate>2017</risdate><volume>36</volume><issue>2</issue><spage>231</spage><epage>258</epage><pages>231-258</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><abstract>This work focuses on solving general multi-robot planning problems in continuous spaces with partial observability given a high-level domain description. Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) are general models for multi-robot coordination problems. However, representing and solving Dec-POMDPs is often intractable for large problems. This work extends the Dec-POMDP model to the Decentralized Partially Observable Semi-Markov Decision Process (Dec-POSMDP) to take advantage of the high-level representations that are natural for multi-robot problems and to facilitate scalable solutions to large discrete and continuous problems. The Dec-POSMDP formulation uses task macro-actions created from lower-level local actions that allow for asynchronous decision-making by the robots, which is crucial in multi-robot domains. This transformation from Dec-POMDPs to Dec-POSMDPs with a finite set of automatically-generated macro-actions allows use of efficient discrete-space search algorithms to solve them. The paper presents algorithms for solving Dec-POSMDPs, which are more scalable than previous methods since they can incorporate closed-loop belief space macro-actions in planning. These macro-actions are automatically constructed to produce robust solutions. The proposed algorithms are then evaluated on a complex multi-robot package delivery problem under uncertainty, showing that our approach can naturally represent realistic problems and provide high-quality solutions for large-scale problems.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0278364917692864</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-3649 |
ispartof | The International journal of robotics research, 2017-02, Vol.36 (2), p.231-258 |
issn | 0278-3649 1741-3176 |
language | eng |
recordid | cdi_proquest_journals_1910845230 |
source | Access via SAGE |
subjects | Algorithms Decentralized control Decision making Game theory Markov analysis Markov chains Mathematical models Observability (systems) Representations Robots Robustness Search algorithms Searching Uncertainty |
title | Decentralized control of multi-robot partially observable Markov decision processes using belief space macro-actions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T17%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decentralized%20control%20of%20multi-robot%20partially%20observable%20Markov%20decision%20processes%20using%20belief%20space%20macro-actions&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Omidshafiei,%20Shayegan&rft.date=2017-02&rft.volume=36&rft.issue=2&rft.spage=231&rft.epage=258&rft.pages=231-258&rft.issn=0278-3649&rft.eissn=1741-3176&rft_id=info:doi/10.1177/0278364917692864&rft_dat=%3Cproquest_cross%3E1910845230%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1910845230&rft_id=info:pmid/&rft_sage_id=10.1177_0278364917692864&rfr_iscdi=true |