Decentralized control of multi-robot partially observable Markov decision processes using belief space macro-actions

This work focuses on solving general multi-robot planning problems in continuous spaces with partial observability given a high-level domain description. Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) are general models for multi-robot coordination problems. However, repre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of robotics research 2017-02, Vol.36 (2), p.231-258
Hauptverfasser: Omidshafiei, Shayegan, Agha–Mohammadi, Ali–Akbar, Amato, Christopher, Liu, Shih–Yuan, How, Jonathan P, Vian, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 258
container_issue 2
container_start_page 231
container_title The International journal of robotics research
container_volume 36
creator Omidshafiei, Shayegan
Agha–Mohammadi, Ali–Akbar
Amato, Christopher
Liu, Shih–Yuan
How, Jonathan P
Vian, John
description This work focuses on solving general multi-robot planning problems in continuous spaces with partial observability given a high-level domain description. Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) are general models for multi-robot coordination problems. However, representing and solving Dec-POMDPs is often intractable for large problems. This work extends the Dec-POMDP model to the Decentralized Partially Observable Semi-Markov Decision Process (Dec-POSMDP) to take advantage of the high-level representations that are natural for multi-robot problems and to facilitate scalable solutions to large discrete and continuous problems. The Dec-POSMDP formulation uses task macro-actions created from lower-level local actions that allow for asynchronous decision-making by the robots, which is crucial in multi-robot domains. This transformation from Dec-POMDPs to Dec-POSMDPs with a finite set of automatically-generated macro-actions allows use of efficient discrete-space search algorithms to solve them. The paper presents algorithms for solving Dec-POSMDPs, which are more scalable than previous methods since they can incorporate closed-loop belief space macro-actions in planning. These macro-actions are automatically constructed to produce robust solutions. The proposed algorithms are then evaluated on a complex multi-robot package delivery problem under uncertainty, showing that our approach can naturally represent realistic problems and provide high-quality solutions for large-scale problems.
doi_str_mv 10.1177/0278364917692864
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1910845230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0278364917692864</sage_id><sourcerecordid>1910845230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-e9dbd63719a77d5bd3b598f6e47a3a2a097a5bedb3e3ea6c9a1bf4f0b58af03c3</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaLgunr3GPBcTZq2aY6yfsKKFz2XSTpZumabmqQL66-3y3oQwdMM8z7m8Qi55OyacylvWC5rURWKy0rldVUckRmXBc_EdDgmsz2c7fFTchbjmjEmKqZmJN2hwT4FcN0XttT4afeOeks3o0tdFrz2iQ4QUgfO7ajXEcMWtEP6AuHDb2mLpoud7-kQvMEYMdIxdv2KanQdWhoHMEg3YILPwKSJGc_JiQUX8eJnzsn7w_3b4ilbvj4-L26XmRFMpQxVq9tKSK5AyrbUrdClqm2FhQQBOTAlodTYaoECoTIKuLaFZbqswTJhxJxcHXynaJ8jxtSs_Rj66WXDFWd1UeaCTSx2YE0JYwxomyF0Gwi7hrNm323zt9tJkh0kEVb4y_Q__jdqNHx-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910845230</pqid></control><display><type>article</type><title>Decentralized control of multi-robot partially observable Markov decision processes using belief space macro-actions</title><source>Access via SAGE</source><creator>Omidshafiei, Shayegan ; Agha–Mohammadi, Ali–Akbar ; Amato, Christopher ; Liu, Shih–Yuan ; How, Jonathan P ; Vian, John</creator><creatorcontrib>Omidshafiei, Shayegan ; Agha–Mohammadi, Ali–Akbar ; Amato, Christopher ; Liu, Shih–Yuan ; How, Jonathan P ; Vian, John</creatorcontrib><description>This work focuses on solving general multi-robot planning problems in continuous spaces with partial observability given a high-level domain description. Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) are general models for multi-robot coordination problems. However, representing and solving Dec-POMDPs is often intractable for large problems. This work extends the Dec-POMDP model to the Decentralized Partially Observable Semi-Markov Decision Process (Dec-POSMDP) to take advantage of the high-level representations that are natural for multi-robot problems and to facilitate scalable solutions to large discrete and continuous problems. The Dec-POSMDP formulation uses task macro-actions created from lower-level local actions that allow for asynchronous decision-making by the robots, which is crucial in multi-robot domains. This transformation from Dec-POMDPs to Dec-POSMDPs with a finite set of automatically-generated macro-actions allows use of efficient discrete-space search algorithms to solve them. The paper presents algorithms for solving Dec-POSMDPs, which are more scalable than previous methods since they can incorporate closed-loop belief space macro-actions in planning. These macro-actions are automatically constructed to produce robust solutions. The proposed algorithms are then evaluated on a complex multi-robot package delivery problem under uncertainty, showing that our approach can naturally represent realistic problems and provide high-quality solutions for large-scale problems.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/0278364917692864</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Decentralized control ; Decision making ; Game theory ; Markov analysis ; Markov chains ; Mathematical models ; Observability (systems) ; Representations ; Robots ; Robustness ; Search algorithms ; Searching ; Uncertainty</subject><ispartof>The International journal of robotics research, 2017-02, Vol.36 (2), p.231-258</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-e9dbd63719a77d5bd3b598f6e47a3a2a097a5bedb3e3ea6c9a1bf4f0b58af03c3</citedby><cites>FETCH-LOGICAL-c309t-e9dbd63719a77d5bd3b598f6e47a3a2a097a5bedb3e3ea6c9a1bf4f0b58af03c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0278364917692864$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0278364917692864$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>315,781,785,21824,27929,27930,43626,43627</link.rule.ids></links><search><creatorcontrib>Omidshafiei, Shayegan</creatorcontrib><creatorcontrib>Agha–Mohammadi, Ali–Akbar</creatorcontrib><creatorcontrib>Amato, Christopher</creatorcontrib><creatorcontrib>Liu, Shih–Yuan</creatorcontrib><creatorcontrib>How, Jonathan P</creatorcontrib><creatorcontrib>Vian, John</creatorcontrib><title>Decentralized control of multi-robot partially observable Markov decision processes using belief space macro-actions</title><title>The International journal of robotics research</title><description>This work focuses on solving general multi-robot planning problems in continuous spaces with partial observability given a high-level domain description. Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) are general models for multi-robot coordination problems. However, representing and solving Dec-POMDPs is often intractable for large problems. This work extends the Dec-POMDP model to the Decentralized Partially Observable Semi-Markov Decision Process (Dec-POSMDP) to take advantage of the high-level representations that are natural for multi-robot problems and to facilitate scalable solutions to large discrete and continuous problems. The Dec-POSMDP formulation uses task macro-actions created from lower-level local actions that allow for asynchronous decision-making by the robots, which is crucial in multi-robot domains. This transformation from Dec-POMDPs to Dec-POSMDPs with a finite set of automatically-generated macro-actions allows use of efficient discrete-space search algorithms to solve them. The paper presents algorithms for solving Dec-POSMDPs, which are more scalable than previous methods since they can incorporate closed-loop belief space macro-actions in planning. These macro-actions are automatically constructed to produce robust solutions. The proposed algorithms are then evaluated on a complex multi-robot package delivery problem under uncertainty, showing that our approach can naturally represent realistic problems and provide high-quality solutions for large-scale problems.</description><subject>Algorithms</subject><subject>Decentralized control</subject><subject>Decision making</subject><subject>Game theory</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Observability (systems)</subject><subject>Representations</subject><subject>Robots</subject><subject>Robustness</subject><subject>Search algorithms</subject><subject>Searching</subject><subject>Uncertainty</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAQDaLgunr3GPBcTZq2aY6yfsKKFz2XSTpZumabmqQL66-3y3oQwdMM8z7m8Qi55OyacylvWC5rURWKy0rldVUckRmXBc_EdDgmsz2c7fFTchbjmjEmKqZmJN2hwT4FcN0XttT4afeOeks3o0tdFrz2iQ4QUgfO7ajXEcMWtEP6AuHDb2mLpoud7-kQvMEYMdIxdv2KanQdWhoHMEg3YILPwKSJGc_JiQUX8eJnzsn7w_3b4ilbvj4-L26XmRFMpQxVq9tKSK5AyrbUrdClqm2FhQQBOTAlodTYaoECoTIKuLaFZbqswTJhxJxcHXynaJ8jxtSs_Rj66WXDFWd1UeaCTSx2YE0JYwxomyF0Gwi7hrNm323zt9tJkh0kEVb4y_Q__jdqNHx-</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Omidshafiei, Shayegan</creator><creator>Agha–Mohammadi, Ali–Akbar</creator><creator>Amato, Christopher</creator><creator>Liu, Shih–Yuan</creator><creator>How, Jonathan P</creator><creator>Vian, John</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201702</creationdate><title>Decentralized control of multi-robot partially observable Markov decision processes using belief space macro-actions</title><author>Omidshafiei, Shayegan ; Agha–Mohammadi, Ali–Akbar ; Amato, Christopher ; Liu, Shih–Yuan ; How, Jonathan P ; Vian, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-e9dbd63719a77d5bd3b598f6e47a3a2a097a5bedb3e3ea6c9a1bf4f0b58af03c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Decentralized control</topic><topic>Decision making</topic><topic>Game theory</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Observability (systems)</topic><topic>Representations</topic><topic>Robots</topic><topic>Robustness</topic><topic>Search algorithms</topic><topic>Searching</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omidshafiei, Shayegan</creatorcontrib><creatorcontrib>Agha–Mohammadi, Ali–Akbar</creatorcontrib><creatorcontrib>Amato, Christopher</creatorcontrib><creatorcontrib>Liu, Shih–Yuan</creatorcontrib><creatorcontrib>How, Jonathan P</creatorcontrib><creatorcontrib>Vian, John</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omidshafiei, Shayegan</au><au>Agha–Mohammadi, Ali–Akbar</au><au>Amato, Christopher</au><au>Liu, Shih–Yuan</au><au>How, Jonathan P</au><au>Vian, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decentralized control of multi-robot partially observable Markov decision processes using belief space macro-actions</atitle><jtitle>The International journal of robotics research</jtitle><date>2017-02</date><risdate>2017</risdate><volume>36</volume><issue>2</issue><spage>231</spage><epage>258</epage><pages>231-258</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><abstract>This work focuses on solving general multi-robot planning problems in continuous spaces with partial observability given a high-level domain description. Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) are general models for multi-robot coordination problems. However, representing and solving Dec-POMDPs is often intractable for large problems. This work extends the Dec-POMDP model to the Decentralized Partially Observable Semi-Markov Decision Process (Dec-POSMDP) to take advantage of the high-level representations that are natural for multi-robot problems and to facilitate scalable solutions to large discrete and continuous problems. The Dec-POSMDP formulation uses task macro-actions created from lower-level local actions that allow for asynchronous decision-making by the robots, which is crucial in multi-robot domains. This transformation from Dec-POMDPs to Dec-POSMDPs with a finite set of automatically-generated macro-actions allows use of efficient discrete-space search algorithms to solve them. The paper presents algorithms for solving Dec-POSMDPs, which are more scalable than previous methods since they can incorporate closed-loop belief space macro-actions in planning. These macro-actions are automatically constructed to produce robust solutions. The proposed algorithms are then evaluated on a complex multi-robot package delivery problem under uncertainty, showing that our approach can naturally represent realistic problems and provide high-quality solutions for large-scale problems.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0278364917692864</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-3649
ispartof The International journal of robotics research, 2017-02, Vol.36 (2), p.231-258
issn 0278-3649
1741-3176
language eng
recordid cdi_proquest_journals_1910845230
source Access via SAGE
subjects Algorithms
Decentralized control
Decision making
Game theory
Markov analysis
Markov chains
Mathematical models
Observability (systems)
Representations
Robots
Robustness
Search algorithms
Searching
Uncertainty
title Decentralized control of multi-robot partially observable Markov decision processes using belief space macro-actions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T17%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decentralized%20control%20of%20multi-robot%20partially%20observable%20Markov%20decision%20processes%20using%20belief%20space%20macro-actions&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Omidshafiei,%20Shayegan&rft.date=2017-02&rft.volume=36&rft.issue=2&rft.spage=231&rft.epage=258&rft.pages=231-258&rft.issn=0278-3649&rft.eissn=1741-3176&rft_id=info:doi/10.1177/0278364917692864&rft_dat=%3Cproquest_cross%3E1910845230%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1910845230&rft_id=info:pmid/&rft_sage_id=10.1177_0278364917692864&rfr_iscdi=true