Motion tomography: Mapping flow fields using autonomous underwater vehicles

Since the motion of autonomous underwater vehicles is affected by ambient flow, knowledge of an environmental flow field can be used to improve the navigation of autonomous underwater vehicles. Due to imperfect knowledge of flow, the actual trajectory of an autonomous underwater vehicle deviates fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of robotics research 2017-03, Vol.36 (3), p.320-336
Hauptverfasser: Chang, Dongsik, Wu, Wencen, Edwards, Catherine R, Zhang, Fumin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 336
container_issue 3
container_start_page 320
container_title The International journal of robotics research
container_volume 36
creator Chang, Dongsik
Wu, Wencen
Edwards, Catherine R
Zhang, Fumin
description Since the motion of autonomous underwater vehicles is affected by ambient flow, knowledge of an environmental flow field can be used to improve the navigation of autonomous underwater vehicles. Due to imperfect knowledge of flow, the actual trajectory of an autonomous underwater vehicle deviates from the predicted trajectory. The difference between the actual and predicted trajectories is referred to as the motion-integration error, providing information of flow along the vehicle trajectory. Inspired by computerized tomography, this paper proposes motion tomography, a tomographic method for creating a fine-grid spatial map of flow based on the motion-integration error. While typical computerized tomography is a linear problem, motion tomography is a nonlinear problem because of unknown nonlinear trajectories of autonomous underwater vehicles and the dependency of the trajectories on the flow field. Therefore, motion tomography employs an iterative process consisting of two alternating steps: Trajectory tracing and flow field estimation. Starting from an initial guess of the flow field, in the trajectory tracing step, unknown nonlinear vehicle trajectories are estimated. Then, using the estimated vehicle trajectories, a spatial map of flow is constructed through either the non-parametric or parametric flow field estimation. The error bound for trajectory tracing is computed and the convergence of both the non-parametric and parametric flow field estimation algorithms is proved. Simulation and experimental data are analyzed to evaluate the performance of motion tomography when subject to changing vehicle speed and flow variability.
doi_str_mv 10.1177/0278364917698747
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1910840236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0278364917698747</sage_id><sourcerecordid>1910840236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-ab2dce007906f4aa802fc37dc15f627c79aa78be43ada21dc5c4e39bf45eafd3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AUxBdRMFbvHgOeo2-zm2zWmxStYouX3sPrfrQpaTbuJpb-9ybEgwieHsz8Zh4MIbcU7ikV4gFSUbCcSypyWQguzkhEBacJG4RzEo12MvqX5CqEPQCwHGRE3leuq1wTd-7gth7b3ekxXmHbVs02trU7xrYytQ5xH0YF-841A9kPQqONP2JnfPxldpWqTbgmFxbrYG5-7oysX57X89dk-bF4mz8tE8Uy2iW4SbUyAEJCbjliAalVTGhFM5unQgmJKIqN4Qw1plSrTHHD5MbyzKDVbEbuptrWu8_ehK7cu943w8eSSgoFh5TlAwUTpbwLwRtbtr46oD-VFMpxsfLvYkMkmSIBt-ZX6X_8N4H3bMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910840236</pqid></control><display><type>article</type><title>Motion tomography: Mapping flow fields using autonomous underwater vehicles</title><source>SAGE Complete</source><creator>Chang, Dongsik ; Wu, Wencen ; Edwards, Catherine R ; Zhang, Fumin</creator><creatorcontrib>Chang, Dongsik ; Wu, Wencen ; Edwards, Catherine R ; Zhang, Fumin</creatorcontrib><description>Since the motion of autonomous underwater vehicles is affected by ambient flow, knowledge of an environmental flow field can be used to improve the navigation of autonomous underwater vehicles. Due to imperfect knowledge of flow, the actual trajectory of an autonomous underwater vehicle deviates from the predicted trajectory. The difference between the actual and predicted trajectories is referred to as the motion-integration error, providing information of flow along the vehicle trajectory. Inspired by computerized tomography, this paper proposes motion tomography, a tomographic method for creating a fine-grid spatial map of flow based on the motion-integration error. While typical computerized tomography is a linear problem, motion tomography is a nonlinear problem because of unknown nonlinear trajectories of autonomous underwater vehicles and the dependency of the trajectories on the flow field. Therefore, motion tomography employs an iterative process consisting of two alternating steps: Trajectory tracing and flow field estimation. Starting from an initial guess of the flow field, in the trajectory tracing step, unknown nonlinear vehicle trajectories are estimated. Then, using the estimated vehicle trajectories, a spatial map of flow is constructed through either the non-parametric or parametric flow field estimation. The error bound for trajectory tracing is computed and the convergence of both the non-parametric and parametric flow field estimation algorithms is proved. Simulation and experimental data are analyzed to evaluate the performance of motion tomography when subject to changing vehicle speed and flow variability.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/0278364917698747</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Autonomous navigation ; Autonomous underwater vehicles ; Computed tomography ; Computer simulation ; Convergence ; Information dissemination ; Iterative methods ; Mapping ; Military technology ; Nonlinearity ; Ocean currents ; Trajectories ; Trajectory analysis ; Underwater vehicles</subject><ispartof>The International journal of robotics research, 2017-03, Vol.36 (3), p.320-336</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-ab2dce007906f4aa802fc37dc15f627c79aa78be43ada21dc5c4e39bf45eafd3</citedby><cites>FETCH-LOGICAL-c351t-ab2dce007906f4aa802fc37dc15f627c79aa78be43ada21dc5c4e39bf45eafd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0278364917698747$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0278364917698747$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Chang, Dongsik</creatorcontrib><creatorcontrib>Wu, Wencen</creatorcontrib><creatorcontrib>Edwards, Catherine R</creatorcontrib><creatorcontrib>Zhang, Fumin</creatorcontrib><title>Motion tomography: Mapping flow fields using autonomous underwater vehicles</title><title>The International journal of robotics research</title><description>Since the motion of autonomous underwater vehicles is affected by ambient flow, knowledge of an environmental flow field can be used to improve the navigation of autonomous underwater vehicles. Due to imperfect knowledge of flow, the actual trajectory of an autonomous underwater vehicle deviates from the predicted trajectory. The difference between the actual and predicted trajectories is referred to as the motion-integration error, providing information of flow along the vehicle trajectory. Inspired by computerized tomography, this paper proposes motion tomography, a tomographic method for creating a fine-grid spatial map of flow based on the motion-integration error. While typical computerized tomography is a linear problem, motion tomography is a nonlinear problem because of unknown nonlinear trajectories of autonomous underwater vehicles and the dependency of the trajectories on the flow field. Therefore, motion tomography employs an iterative process consisting of two alternating steps: Trajectory tracing and flow field estimation. Starting from an initial guess of the flow field, in the trajectory tracing step, unknown nonlinear vehicle trajectories are estimated. Then, using the estimated vehicle trajectories, a spatial map of flow is constructed through either the non-parametric or parametric flow field estimation. The error bound for trajectory tracing is computed and the convergence of both the non-parametric and parametric flow field estimation algorithms is proved. Simulation and experimental data are analyzed to evaluate the performance of motion tomography when subject to changing vehicle speed and flow variability.</description><subject>Algorithms</subject><subject>Autonomous navigation</subject><subject>Autonomous underwater vehicles</subject><subject>Computed tomography</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Information dissemination</subject><subject>Iterative methods</subject><subject>Mapping</subject><subject>Military technology</subject><subject>Nonlinearity</subject><subject>Ocean currents</subject><subject>Trajectories</subject><subject>Trajectory analysis</subject><subject>Underwater vehicles</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AUxBdRMFbvHgOeo2-zm2zWmxStYouX3sPrfrQpaTbuJpb-9ybEgwieHsz8Zh4MIbcU7ikV4gFSUbCcSypyWQguzkhEBacJG4RzEo12MvqX5CqEPQCwHGRE3leuq1wTd-7gth7b3ekxXmHbVs02trU7xrYytQ5xH0YF-841A9kPQqONP2JnfPxldpWqTbgmFxbrYG5-7oysX57X89dk-bF4mz8tE8Uy2iW4SbUyAEJCbjliAalVTGhFM5unQgmJKIqN4Qw1plSrTHHD5MbyzKDVbEbuptrWu8_ehK7cu943w8eSSgoFh5TlAwUTpbwLwRtbtr46oD-VFMpxsfLvYkMkmSIBt-ZX6X_8N4H3bMM</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Chang, Dongsik</creator><creator>Wu, Wencen</creator><creator>Edwards, Catherine R</creator><creator>Zhang, Fumin</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201703</creationdate><title>Motion tomography: Mapping flow fields using autonomous underwater vehicles</title><author>Chang, Dongsik ; Wu, Wencen ; Edwards, Catherine R ; Zhang, Fumin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-ab2dce007906f4aa802fc37dc15f627c79aa78be43ada21dc5c4e39bf45eafd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Autonomous navigation</topic><topic>Autonomous underwater vehicles</topic><topic>Computed tomography</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Information dissemination</topic><topic>Iterative methods</topic><topic>Mapping</topic><topic>Military technology</topic><topic>Nonlinearity</topic><topic>Ocean currents</topic><topic>Trajectories</topic><topic>Trajectory analysis</topic><topic>Underwater vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Dongsik</creatorcontrib><creatorcontrib>Wu, Wencen</creatorcontrib><creatorcontrib>Edwards, Catherine R</creatorcontrib><creatorcontrib>Zhang, Fumin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Dongsik</au><au>Wu, Wencen</au><au>Edwards, Catherine R</au><au>Zhang, Fumin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion tomography: Mapping flow fields using autonomous underwater vehicles</atitle><jtitle>The International journal of robotics research</jtitle><date>2017-03</date><risdate>2017</risdate><volume>36</volume><issue>3</issue><spage>320</spage><epage>336</epage><pages>320-336</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><abstract>Since the motion of autonomous underwater vehicles is affected by ambient flow, knowledge of an environmental flow field can be used to improve the navigation of autonomous underwater vehicles. Due to imperfect knowledge of flow, the actual trajectory of an autonomous underwater vehicle deviates from the predicted trajectory. The difference between the actual and predicted trajectories is referred to as the motion-integration error, providing information of flow along the vehicle trajectory. Inspired by computerized tomography, this paper proposes motion tomography, a tomographic method for creating a fine-grid spatial map of flow based on the motion-integration error. While typical computerized tomography is a linear problem, motion tomography is a nonlinear problem because of unknown nonlinear trajectories of autonomous underwater vehicles and the dependency of the trajectories on the flow field. Therefore, motion tomography employs an iterative process consisting of two alternating steps: Trajectory tracing and flow field estimation. Starting from an initial guess of the flow field, in the trajectory tracing step, unknown nonlinear vehicle trajectories are estimated. Then, using the estimated vehicle trajectories, a spatial map of flow is constructed through either the non-parametric or parametric flow field estimation. The error bound for trajectory tracing is computed and the convergence of both the non-parametric and parametric flow field estimation algorithms is proved. Simulation and experimental data are analyzed to evaluate the performance of motion tomography when subject to changing vehicle speed and flow variability.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0278364917698747</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-3649
ispartof The International journal of robotics research, 2017-03, Vol.36 (3), p.320-336
issn 0278-3649
1741-3176
language eng
recordid cdi_proquest_journals_1910840236
source SAGE Complete
subjects Algorithms
Autonomous navigation
Autonomous underwater vehicles
Computed tomography
Computer simulation
Convergence
Information dissemination
Iterative methods
Mapping
Military technology
Nonlinearity
Ocean currents
Trajectories
Trajectory analysis
Underwater vehicles
title Motion tomography: Mapping flow fields using autonomous underwater vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A30%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion%20tomography:%20Mapping%20flow%20fields%20using%20autonomous%20underwater%20vehicles&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Chang,%20Dongsik&rft.date=2017-03&rft.volume=36&rft.issue=3&rft.spage=320&rft.epage=336&rft.pages=320-336&rft.issn=0278-3649&rft.eissn=1741-3176&rft_id=info:doi/10.1177/0278364917698747&rft_dat=%3Cproquest_cross%3E1910840236%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1910840236&rft_id=info:pmid/&rft_sage_id=10.1177_0278364917698747&rfr_iscdi=true