Poly(lactic acid)/montmorillonite blown films: Crystallization, mechanics, and permeation
ABSTRACT The study focuses on the development and characterization of poly(lactic acid) (PLA)/montmorillonite (clay) nanocomposite films. Samples of 0%, 1%, 3%, and 6% (by weight) clay were shear‐mixed, melt‐blended, and blown‐film processed. Afterward, the effects of clay on the kinetics of cold‐cr...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2017-09, Vol.134 (36), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 36 |
container_start_page | |
container_title | Journal of applied polymer science |
container_volume | 134 |
creator | Zheng, W. Beeler, M. Claus, J. Xu, X. |
description | ABSTRACT
The study focuses on the development and characterization of poly(lactic acid) (PLA)/montmorillonite (clay) nanocomposite films. Samples of 0%, 1%, 3%, and 6% (by weight) clay were shear‐mixed, melt‐blended, and blown‐film processed. Afterward, the effects of clay on the kinetics of cold‐crystallization, mechanical properties, and the oxygen barriers are investigated using differential scanning calorimetry, dynamic mechanical analyzer, and permeation tester, respectively. Through the traditional Avrami analysis, clay is found to accelerate the crystallization process with a higher crystallization rate constant. The Avrami exponent obtained for composites is higher than the neat PLA although all samples show a decreased Avrami exponent with increase of the crystallization temperature. At the same time, the clay exhibits reinforcement effects on the glassy modulus of the composites and influences the cold‐crystallization event, similar to the calorimetric results. In addition, the oxygen permeation slightly decreases on adding the clay. With 3% clay concentration, the permeation coefficient is reduced by 24%. The implication of the results is discussed in the article. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45260. |
doi_str_mv | 10.1002/app.45260 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1910735842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1910735842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2970-acef7affc0343446dcefc05fefcaebb89b8c82b8c3c6719a1b8d680cd839f1803</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKsL_8GAGwud9maeibtSfEHBLnThKmQyCaZkJmMypYy_vrHj1s25XM5374GD0C2GBQZIlrzrFlmeFHCGJhhoGWdFQs7RJHg4JpTml-jK-x0AxjkUE_S5tWa4N1z0WkRc6Hq2bGzbN9ZpY2yrexlVxh7aSGnT-Ido7Qbfc2P0D--1bedRI8UXb7Xw84i3ddRJ18iTdY0uFDde3vzNKfp4enxfv8Sbt-fX9WoTi4SWEHMhVcmVEpBmaZYVddgF5Cool1VFaEUESYKkoigx5bgidUFA1CSlChNIp-hu_Ns5-72Xvmc7u3dtiGSYYijTnGRJoGYjJZz13knFOqcb7gaGgf02x0Jz7NRcYJcje9BGDv-DbLXdjhdHUFNxhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910735842</pqid></control><display><type>article</type><title>Poly(lactic acid)/montmorillonite blown films: Crystallization, mechanics, and permeation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zheng, W. ; Beeler, M. ; Claus, J. ; Xu, X.</creator><creatorcontrib>Zheng, W. ; Beeler, M. ; Claus, J. ; Xu, X.</creatorcontrib><description>ABSTRACT
The study focuses on the development and characterization of poly(lactic acid) (PLA)/montmorillonite (clay) nanocomposite films. Samples of 0%, 1%, 3%, and 6% (by weight) clay were shear‐mixed, melt‐blended, and blown‐film processed. Afterward, the effects of clay on the kinetics of cold‐crystallization, mechanical properties, and the oxygen barriers are investigated using differential scanning calorimetry, dynamic mechanical analyzer, and permeation tester, respectively. Through the traditional Avrami analysis, clay is found to accelerate the crystallization process with a higher crystallization rate constant. The Avrami exponent obtained for composites is higher than the neat PLA although all samples show a decreased Avrami exponent with increase of the crystallization temperature. At the same time, the clay exhibits reinforcement effects on the glassy modulus of the composites and influences the cold‐crystallization event, similar to the calorimetric results. In addition, the oxygen permeation slightly decreases on adding the clay. With 3% clay concentration, the permeation coefficient is reduced by 24%. The implication of the results is discussed in the article. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45260.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.45260</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Analog computers ; Barriers ; Clay ; Coefficients ; Crystallization ; Differential scanning calorimetry ; Heat measurement ; Materials science ; Mechanical properties ; Mechanics (physics) ; modulus ; Montmorillonite ; Nanocomposites ; Oxygen ; oxygen permeation ; Permeation ; poly(lactic acid) ; Polylactic acid ; Polymers ; Reinforcement ; Shear ; Thermal analysis</subject><ispartof>Journal of applied polymer science, 2017-09, Vol.134 (36), p.n/a</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2970-acef7affc0343446dcefc05fefcaebb89b8c82b8c3c6719a1b8d680cd839f1803</citedby><cites>FETCH-LOGICAL-c2970-acef7affc0343446dcefc05fefcaebb89b8c82b8c3c6719a1b8d680cd839f1803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.45260$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.45260$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zheng, W.</creatorcontrib><creatorcontrib>Beeler, M.</creatorcontrib><creatorcontrib>Claus, J.</creatorcontrib><creatorcontrib>Xu, X.</creatorcontrib><title>Poly(lactic acid)/montmorillonite blown films: Crystallization, mechanics, and permeation</title><title>Journal of applied polymer science</title><description>ABSTRACT
The study focuses on the development and characterization of poly(lactic acid) (PLA)/montmorillonite (clay) nanocomposite films. Samples of 0%, 1%, 3%, and 6% (by weight) clay were shear‐mixed, melt‐blended, and blown‐film processed. Afterward, the effects of clay on the kinetics of cold‐crystallization, mechanical properties, and the oxygen barriers are investigated using differential scanning calorimetry, dynamic mechanical analyzer, and permeation tester, respectively. Through the traditional Avrami analysis, clay is found to accelerate the crystallization process with a higher crystallization rate constant. The Avrami exponent obtained for composites is higher than the neat PLA although all samples show a decreased Avrami exponent with increase of the crystallization temperature. At the same time, the clay exhibits reinforcement effects on the glassy modulus of the composites and influences the cold‐crystallization event, similar to the calorimetric results. In addition, the oxygen permeation slightly decreases on adding the clay. With 3% clay concentration, the permeation coefficient is reduced by 24%. The implication of the results is discussed in the article. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45260.</description><subject>Analog computers</subject><subject>Barriers</subject><subject>Clay</subject><subject>Coefficients</subject><subject>Crystallization</subject><subject>Differential scanning calorimetry</subject><subject>Heat measurement</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Mechanics (physics)</subject><subject>modulus</subject><subject>Montmorillonite</subject><subject>Nanocomposites</subject><subject>Oxygen</subject><subject>oxygen permeation</subject><subject>Permeation</subject><subject>poly(lactic acid)</subject><subject>Polylactic acid</subject><subject>Polymers</subject><subject>Reinforcement</subject><subject>Shear</subject><subject>Thermal analysis</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKsL_8GAGwud9maeibtSfEHBLnThKmQyCaZkJmMypYy_vrHj1s25XM5374GD0C2GBQZIlrzrFlmeFHCGJhhoGWdFQs7RJHg4JpTml-jK-x0AxjkUE_S5tWa4N1z0WkRc6Hq2bGzbN9ZpY2yrexlVxh7aSGnT-Ido7Qbfc2P0D--1bedRI8UXb7Xw84i3ddRJ18iTdY0uFDde3vzNKfp4enxfv8Sbt-fX9WoTi4SWEHMhVcmVEpBmaZYVddgF5Cool1VFaEUESYKkoigx5bgidUFA1CSlChNIp-hu_Ns5-72Xvmc7u3dtiGSYYijTnGRJoGYjJZz13knFOqcb7gaGgf02x0Jz7NRcYJcje9BGDv-DbLXdjhdHUFNxhQ</recordid><startdate>20170920</startdate><enddate>20170920</enddate><creator>Zheng, W.</creator><creator>Beeler, M.</creator><creator>Claus, J.</creator><creator>Xu, X.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20170920</creationdate><title>Poly(lactic acid)/montmorillonite blown films: Crystallization, mechanics, and permeation</title><author>Zheng, W. ; Beeler, M. ; Claus, J. ; Xu, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2970-acef7affc0343446dcefc05fefcaebb89b8c82b8c3c6719a1b8d680cd839f1803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analog computers</topic><topic>Barriers</topic><topic>Clay</topic><topic>Coefficients</topic><topic>Crystallization</topic><topic>Differential scanning calorimetry</topic><topic>Heat measurement</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Mechanics (physics)</topic><topic>modulus</topic><topic>Montmorillonite</topic><topic>Nanocomposites</topic><topic>Oxygen</topic><topic>oxygen permeation</topic><topic>Permeation</topic><topic>poly(lactic acid)</topic><topic>Polylactic acid</topic><topic>Polymers</topic><topic>Reinforcement</topic><topic>Shear</topic><topic>Thermal analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, W.</creatorcontrib><creatorcontrib>Beeler, M.</creatorcontrib><creatorcontrib>Claus, J.</creatorcontrib><creatorcontrib>Xu, X.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, W.</au><au>Beeler, M.</au><au>Claus, J.</au><au>Xu, X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly(lactic acid)/montmorillonite blown films: Crystallization, mechanics, and permeation</atitle><jtitle>Journal of applied polymer science</jtitle><date>2017-09-20</date><risdate>2017</risdate><volume>134</volume><issue>36</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>ABSTRACT
The study focuses on the development and characterization of poly(lactic acid) (PLA)/montmorillonite (clay) nanocomposite films. Samples of 0%, 1%, 3%, and 6% (by weight) clay were shear‐mixed, melt‐blended, and blown‐film processed. Afterward, the effects of clay on the kinetics of cold‐crystallization, mechanical properties, and the oxygen barriers are investigated using differential scanning calorimetry, dynamic mechanical analyzer, and permeation tester, respectively. Through the traditional Avrami analysis, clay is found to accelerate the crystallization process with a higher crystallization rate constant. The Avrami exponent obtained for composites is higher than the neat PLA although all samples show a decreased Avrami exponent with increase of the crystallization temperature. At the same time, the clay exhibits reinforcement effects on the glassy modulus of the composites and influences the cold‐crystallization event, similar to the calorimetric results. In addition, the oxygen permeation slightly decreases on adding the clay. With 3% clay concentration, the permeation coefficient is reduced by 24%. The implication of the results is discussed in the article. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45260.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/app.45260</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2017-09, Vol.134 (36), p.n/a |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_journals_1910735842 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Analog computers Barriers Clay Coefficients Crystallization Differential scanning calorimetry Heat measurement Materials science Mechanical properties Mechanics (physics) modulus Montmorillonite Nanocomposites Oxygen oxygen permeation Permeation poly(lactic acid) Polylactic acid Polymers Reinforcement Shear Thermal analysis |
title | Poly(lactic acid)/montmorillonite blown films: Crystallization, mechanics, and permeation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A35%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(lactic%20acid)/montmorillonite%20blown%20films:%20Crystallization,%20mechanics,%20and%20permeation&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Zheng,%20W.&rft.date=2017-09-20&rft.volume=134&rft.issue=36&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.45260&rft_dat=%3Cproquest_cross%3E1910735842%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1910735842&rft_id=info:pmid/&rfr_iscdi=true |