Poly(lactic acid)/montmorillonite blown films: Crystallization, mechanics, and permeation

ABSTRACT The study focuses on the development and characterization of poly(lactic acid) (PLA)/montmorillonite (clay) nanocomposite films. Samples of 0%, 1%, 3%, and 6% (by weight) clay were shear‐mixed, melt‐blended, and blown‐film processed. Afterward, the effects of clay on the kinetics of cold‐cr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2017-09, Vol.134 (36), p.n/a
Hauptverfasser: Zheng, W., Beeler, M., Claus, J., Xu, X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 36
container_start_page
container_title Journal of applied polymer science
container_volume 134
creator Zheng, W.
Beeler, M.
Claus, J.
Xu, X.
description ABSTRACT The study focuses on the development and characterization of poly(lactic acid) (PLA)/montmorillonite (clay) nanocomposite films. Samples of 0%, 1%, 3%, and 6% (by weight) clay were shear‐mixed, melt‐blended, and blown‐film processed. Afterward, the effects of clay on the kinetics of cold‐crystallization, mechanical properties, and the oxygen barriers are investigated using differential scanning calorimetry, dynamic mechanical analyzer, and permeation tester, respectively. Through the traditional Avrami analysis, clay is found to accelerate the crystallization process with a higher crystallization rate constant. The Avrami exponent obtained for composites is higher than the neat PLA although all samples show a decreased Avrami exponent with increase of the crystallization temperature. At the same time, the clay exhibits reinforcement effects on the glassy modulus of the composites and influences the cold‐crystallization event, similar to the calorimetric results. In addition, the oxygen permeation slightly decreases on adding the clay. With 3% clay concentration, the permeation coefficient is reduced by 24%. The implication of the results is discussed in the article. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45260.
doi_str_mv 10.1002/app.45260
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1910735842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1910735842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2970-acef7affc0343446dcefc05fefcaebb89b8c82b8c3c6719a1b8d680cd839f1803</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKsL_8GAGwud9maeibtSfEHBLnThKmQyCaZkJmMypYy_vrHj1s25XM5374GD0C2GBQZIlrzrFlmeFHCGJhhoGWdFQs7RJHg4JpTml-jK-x0AxjkUE_S5tWa4N1z0WkRc6Hq2bGzbN9ZpY2yrexlVxh7aSGnT-Ido7Qbfc2P0D--1bedRI8UXb7Xw84i3ddRJ18iTdY0uFDde3vzNKfp4enxfv8Sbt-fX9WoTi4SWEHMhVcmVEpBmaZYVddgF5Cool1VFaEUESYKkoigx5bgidUFA1CSlChNIp-hu_Ns5-72Xvmc7u3dtiGSYYijTnGRJoGYjJZz13knFOqcb7gaGgf02x0Jz7NRcYJcje9BGDv-DbLXdjhdHUFNxhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910735842</pqid></control><display><type>article</type><title>Poly(lactic acid)/montmorillonite blown films: Crystallization, mechanics, and permeation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zheng, W. ; Beeler, M. ; Claus, J. ; Xu, X.</creator><creatorcontrib>Zheng, W. ; Beeler, M. ; Claus, J. ; Xu, X.</creatorcontrib><description>ABSTRACT The study focuses on the development and characterization of poly(lactic acid) (PLA)/montmorillonite (clay) nanocomposite films. Samples of 0%, 1%, 3%, and 6% (by weight) clay were shear‐mixed, melt‐blended, and blown‐film processed. Afterward, the effects of clay on the kinetics of cold‐crystallization, mechanical properties, and the oxygen barriers are investigated using differential scanning calorimetry, dynamic mechanical analyzer, and permeation tester, respectively. Through the traditional Avrami analysis, clay is found to accelerate the crystallization process with a higher crystallization rate constant. The Avrami exponent obtained for composites is higher than the neat PLA although all samples show a decreased Avrami exponent with increase of the crystallization temperature. At the same time, the clay exhibits reinforcement effects on the glassy modulus of the composites and influences the cold‐crystallization event, similar to the calorimetric results. In addition, the oxygen permeation slightly decreases on adding the clay. With 3% clay concentration, the permeation coefficient is reduced by 24%. The implication of the results is discussed in the article. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45260.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.45260</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Analog computers ; Barriers ; Clay ; Coefficients ; Crystallization ; Differential scanning calorimetry ; Heat measurement ; Materials science ; Mechanical properties ; Mechanics (physics) ; modulus ; Montmorillonite ; Nanocomposites ; Oxygen ; oxygen permeation ; Permeation ; poly(lactic acid) ; Polylactic acid ; Polymers ; Reinforcement ; Shear ; Thermal analysis</subject><ispartof>Journal of applied polymer science, 2017-09, Vol.134 (36), p.n/a</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2970-acef7affc0343446dcefc05fefcaebb89b8c82b8c3c6719a1b8d680cd839f1803</citedby><cites>FETCH-LOGICAL-c2970-acef7affc0343446dcefc05fefcaebb89b8c82b8c3c6719a1b8d680cd839f1803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.45260$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.45260$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zheng, W.</creatorcontrib><creatorcontrib>Beeler, M.</creatorcontrib><creatorcontrib>Claus, J.</creatorcontrib><creatorcontrib>Xu, X.</creatorcontrib><title>Poly(lactic acid)/montmorillonite blown films: Crystallization, mechanics, and permeation</title><title>Journal of applied polymer science</title><description>ABSTRACT The study focuses on the development and characterization of poly(lactic acid) (PLA)/montmorillonite (clay) nanocomposite films. Samples of 0%, 1%, 3%, and 6% (by weight) clay were shear‐mixed, melt‐blended, and blown‐film processed. Afterward, the effects of clay on the kinetics of cold‐crystallization, mechanical properties, and the oxygen barriers are investigated using differential scanning calorimetry, dynamic mechanical analyzer, and permeation tester, respectively. Through the traditional Avrami analysis, clay is found to accelerate the crystallization process with a higher crystallization rate constant. The Avrami exponent obtained for composites is higher than the neat PLA although all samples show a decreased Avrami exponent with increase of the crystallization temperature. At the same time, the clay exhibits reinforcement effects on the glassy modulus of the composites and influences the cold‐crystallization event, similar to the calorimetric results. In addition, the oxygen permeation slightly decreases on adding the clay. With 3% clay concentration, the permeation coefficient is reduced by 24%. The implication of the results is discussed in the article. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45260.</description><subject>Analog computers</subject><subject>Barriers</subject><subject>Clay</subject><subject>Coefficients</subject><subject>Crystallization</subject><subject>Differential scanning calorimetry</subject><subject>Heat measurement</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Mechanics (physics)</subject><subject>modulus</subject><subject>Montmorillonite</subject><subject>Nanocomposites</subject><subject>Oxygen</subject><subject>oxygen permeation</subject><subject>Permeation</subject><subject>poly(lactic acid)</subject><subject>Polylactic acid</subject><subject>Polymers</subject><subject>Reinforcement</subject><subject>Shear</subject><subject>Thermal analysis</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKsL_8GAGwud9maeibtSfEHBLnThKmQyCaZkJmMypYy_vrHj1s25XM5374GD0C2GBQZIlrzrFlmeFHCGJhhoGWdFQs7RJHg4JpTml-jK-x0AxjkUE_S5tWa4N1z0WkRc6Hq2bGzbN9ZpY2yrexlVxh7aSGnT-Ido7Qbfc2P0D--1bedRI8UXb7Xw84i3ddRJ18iTdY0uFDde3vzNKfp4enxfv8Sbt-fX9WoTi4SWEHMhVcmVEpBmaZYVddgF5Cool1VFaEUESYKkoigx5bgidUFA1CSlChNIp-hu_Ns5-72Xvmc7u3dtiGSYYijTnGRJoGYjJZz13knFOqcb7gaGgf02x0Jz7NRcYJcje9BGDv-DbLXdjhdHUFNxhQ</recordid><startdate>20170920</startdate><enddate>20170920</enddate><creator>Zheng, W.</creator><creator>Beeler, M.</creator><creator>Claus, J.</creator><creator>Xu, X.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20170920</creationdate><title>Poly(lactic acid)/montmorillonite blown films: Crystallization, mechanics, and permeation</title><author>Zheng, W. ; Beeler, M. ; Claus, J. ; Xu, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2970-acef7affc0343446dcefc05fefcaebb89b8c82b8c3c6719a1b8d680cd839f1803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analog computers</topic><topic>Barriers</topic><topic>Clay</topic><topic>Coefficients</topic><topic>Crystallization</topic><topic>Differential scanning calorimetry</topic><topic>Heat measurement</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Mechanics (physics)</topic><topic>modulus</topic><topic>Montmorillonite</topic><topic>Nanocomposites</topic><topic>Oxygen</topic><topic>oxygen permeation</topic><topic>Permeation</topic><topic>poly(lactic acid)</topic><topic>Polylactic acid</topic><topic>Polymers</topic><topic>Reinforcement</topic><topic>Shear</topic><topic>Thermal analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, W.</creatorcontrib><creatorcontrib>Beeler, M.</creatorcontrib><creatorcontrib>Claus, J.</creatorcontrib><creatorcontrib>Xu, X.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, W.</au><au>Beeler, M.</au><au>Claus, J.</au><au>Xu, X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly(lactic acid)/montmorillonite blown films: Crystallization, mechanics, and permeation</atitle><jtitle>Journal of applied polymer science</jtitle><date>2017-09-20</date><risdate>2017</risdate><volume>134</volume><issue>36</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>ABSTRACT The study focuses on the development and characterization of poly(lactic acid) (PLA)/montmorillonite (clay) nanocomposite films. Samples of 0%, 1%, 3%, and 6% (by weight) clay were shear‐mixed, melt‐blended, and blown‐film processed. Afterward, the effects of clay on the kinetics of cold‐crystallization, mechanical properties, and the oxygen barriers are investigated using differential scanning calorimetry, dynamic mechanical analyzer, and permeation tester, respectively. Through the traditional Avrami analysis, clay is found to accelerate the crystallization process with a higher crystallization rate constant. The Avrami exponent obtained for composites is higher than the neat PLA although all samples show a decreased Avrami exponent with increase of the crystallization temperature. At the same time, the clay exhibits reinforcement effects on the glassy modulus of the composites and influences the cold‐crystallization event, similar to the calorimetric results. In addition, the oxygen permeation slightly decreases on adding the clay. With 3% clay concentration, the permeation coefficient is reduced by 24%. The implication of the results is discussed in the article. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45260.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/app.45260</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2017-09, Vol.134 (36), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_1910735842
source Wiley Online Library Journals Frontfile Complete
subjects Analog computers
Barriers
Clay
Coefficients
Crystallization
Differential scanning calorimetry
Heat measurement
Materials science
Mechanical properties
Mechanics (physics)
modulus
Montmorillonite
Nanocomposites
Oxygen
oxygen permeation
Permeation
poly(lactic acid)
Polylactic acid
Polymers
Reinforcement
Shear
Thermal analysis
title Poly(lactic acid)/montmorillonite blown films: Crystallization, mechanics, and permeation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A35%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(lactic%20acid)/montmorillonite%20blown%20films:%20Crystallization,%20mechanics,%20and%20permeation&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Zheng,%20W.&rft.date=2017-09-20&rft.volume=134&rft.issue=36&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.45260&rft_dat=%3Cproquest_cross%3E1910735842%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1910735842&rft_id=info:pmid/&rfr_iscdi=true