Gas Sensing Properties of NiSb2O6 Micro- and Nanoparticles in Propane and Carbon Monoxide Atmospheres
Micro- and nanoparticles of NiSb2O6 were synthesized by the microwave-assisted colloidal method. Nickel nitrate, antimony chloride, ethylenediamine, and ethyl alcohol were used. The oxide was obtained at 600°C and was analyzed by X-ray diffraction (XRD) and Raman spectroscopy, showing a trirutile-ty...
Gespeichert in:
Veröffentlicht in: | Journal of nanomaterials 2017-01, Vol.2017 (2017), p.1-9 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 2017 |
container_start_page | 1 |
container_title | Journal of nanomaterials |
container_volume | 2017 |
creator | Olvera, M. de la L. Bonilla, José Trinidad Guillen Moran Lazaro, J. P. Guillen-Bonilla, Alex Flores-Martínez, Martín Guillén Bonilla, Héctor Rodríguez-Betancourtt, Verónica-M. González, M. A. |
description | Micro- and nanoparticles of NiSb2O6 were synthesized by the microwave-assisted colloidal method. Nickel nitrate, antimony chloride, ethylenediamine, and ethyl alcohol were used. The oxide was obtained at 600°C and was analyzed by X-ray diffraction (XRD) and Raman spectroscopy, showing a trirutile-type structure with cell parameters a = 4.641 Å, c = 9.223 Å, and a space group P42/mnm (136). Average crystal size was estimated at ~31.19 nm, according to the XRD-peaks. The microstructure was scrutinized by scanning electron microscopy (SEM), observing microrods measuring ~3.32 μm long and ~2.71 μm wide, and microspheres with an average diameter of ~8 μm; the size of the particles shaping the microspheres was measured in the range of ~0.22 to 1.8 μm. Transmission electron microscopy (TEM) revealed that nanoparticles were obtained with sizes in the range of 2 to 20 nm (~10.7 nm on average). Pellets made of oxide’s powders were tested in propane (C3H8) and carbon monoxide (CO) atmospheres at different concentrations and temperatures. The response of the material increased significantly as the temperature and the concentration of the test gases rose. These results show that NiSb2O6 may be a good candidate for gas sensing applications. |
doi_str_mv | 10.1155/2017/8792567 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hinda</sourceid><recordid>TN_cdi_proquest_journals_1910719459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4322906465</sourcerecordid><originalsourceid>FETCH-LOGICAL-e317t-f3c78b327087f46fd52ddc4fe111c6a0723c449c600061a2486260b75c3db04f3</originalsourceid><addsrcrecordid>eNpF0E1LAzEQBuAgCtbqzbMEPMraTLJJdo-laBVqK1TPSzab2JQ2WZMW9d-7_UBPGcgzM8yL0DWQewDOB5SAHBSypFzIE9QDUcgsB1qe_tVAztFFSktCcl5y2kNmrBKeG5-c_8CvMbQmbpxJOFg8dfOazgR-cTqGDCvf4KnyoVWd0KvOOL_vUN7sP0cq1sHjl-DDt2sMHm7WIbULE026RGdWrZK5Or599P748DZ6yiaz8fNoOMkMA7nJLNOyqBmVpJA2F7bhtGl0bg0AaKGIpEzneakFIUSAonkhqCC15Jo1Nckt66Pbw9w2hs-tSZtqGbbRdysrKIFIKLuzO3V3UAvnG_Xlqja6tYo_FZBql2O1y7E65tjpm4M2nTFW_WsomOQF-wW0yG1W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910719459</pqid></control><display><type>article</type><title>Gas Sensing Properties of NiSb2O6 Micro- and Nanoparticles in Propane and Carbon Monoxide Atmospheres</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Olvera, M. de la L. ; Bonilla, José Trinidad Guillen ; Moran Lazaro, J. P. ; Guillen-Bonilla, Alex ; Flores-Martínez, Martín ; Guillén Bonilla, Héctor ; Rodríguez-Betancourtt, Verónica-M. ; González, M. A.</creator><contributor>Jeyadevan, Balachandran</contributor><creatorcontrib>Olvera, M. de la L. ; Bonilla, José Trinidad Guillen ; Moran Lazaro, J. P. ; Guillen-Bonilla, Alex ; Flores-Martínez, Martín ; Guillén Bonilla, Héctor ; Rodríguez-Betancourtt, Verónica-M. ; González, M. A. ; Jeyadevan, Balachandran</creatorcontrib><description>Micro- and nanoparticles of NiSb2O6 were synthesized by the microwave-assisted colloidal method. Nickel nitrate, antimony chloride, ethylenediamine, and ethyl alcohol were used. The oxide was obtained at 600°C and was analyzed by X-ray diffraction (XRD) and Raman spectroscopy, showing a trirutile-type structure with cell parameters a = 4.641 Å, c = 9.223 Å, and a space group P42/mnm (136). Average crystal size was estimated at ~31.19 nm, according to the XRD-peaks. The microstructure was scrutinized by scanning electron microscopy (SEM), observing microrods measuring ~3.32 μm long and ~2.71 μm wide, and microspheres with an average diameter of ~8 μm; the size of the particles shaping the microspheres was measured in the range of ~0.22 to 1.8 μm. Transmission electron microscopy (TEM) revealed that nanoparticles were obtained with sizes in the range of 2 to 20 nm (~10.7 nm on average). Pellets made of oxide’s powders were tested in propane (C3H8) and carbon monoxide (CO) atmospheres at different concentrations and temperatures. The response of the material increased significantly as the temperature and the concentration of the test gases rose. These results show that NiSb2O6 may be a good candidate for gas sensing applications.</description><identifier>ISSN: 1687-4110</identifier><identifier>EISSN: 1687-4129</identifier><identifier>DOI: 10.1155/2017/8792567</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Carbon dioxide ; Carbon monoxide ; Efficiency ; Gases ; Morphology ; Nanomaterials ; Particle size ; Propane ; Spectrum analysis</subject><ispartof>Journal of nanomaterials, 2017-01, Vol.2017 (2017), p.1-9</ispartof><rights>Copyright © 2017 Verónica-M. Rodríguez-Betancourtt et al.</rights><rights>Copyright © 2017 Verónica-M. Rodríguez-Betancourtt et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8029-017X ; 0000-0003-0041-3932 ; 0000-0002-0048-9198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Jeyadevan, Balachandran</contributor><creatorcontrib>Olvera, M. de la L.</creatorcontrib><creatorcontrib>Bonilla, José Trinidad Guillen</creatorcontrib><creatorcontrib>Moran Lazaro, J. P.</creatorcontrib><creatorcontrib>Guillen-Bonilla, Alex</creatorcontrib><creatorcontrib>Flores-Martínez, Martín</creatorcontrib><creatorcontrib>Guillén Bonilla, Héctor</creatorcontrib><creatorcontrib>Rodríguez-Betancourtt, Verónica-M.</creatorcontrib><creatorcontrib>González, M. A.</creatorcontrib><title>Gas Sensing Properties of NiSb2O6 Micro- and Nanoparticles in Propane and Carbon Monoxide Atmospheres</title><title>Journal of nanomaterials</title><description>Micro- and nanoparticles of NiSb2O6 were synthesized by the microwave-assisted colloidal method. Nickel nitrate, antimony chloride, ethylenediamine, and ethyl alcohol were used. The oxide was obtained at 600°C and was analyzed by X-ray diffraction (XRD) and Raman spectroscopy, showing a trirutile-type structure with cell parameters a = 4.641 Å, c = 9.223 Å, and a space group P42/mnm (136). Average crystal size was estimated at ~31.19 nm, according to the XRD-peaks. The microstructure was scrutinized by scanning electron microscopy (SEM), observing microrods measuring ~3.32 μm long and ~2.71 μm wide, and microspheres with an average diameter of ~8 μm; the size of the particles shaping the microspheres was measured in the range of ~0.22 to 1.8 μm. Transmission electron microscopy (TEM) revealed that nanoparticles were obtained with sizes in the range of 2 to 20 nm (~10.7 nm on average). Pellets made of oxide’s powders were tested in propane (C3H8) and carbon monoxide (CO) atmospheres at different concentrations and temperatures. The response of the material increased significantly as the temperature and the concentration of the test gases rose. These results show that NiSb2O6 may be a good candidate for gas sensing applications.</description><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Efficiency</subject><subject>Gases</subject><subject>Morphology</subject><subject>Nanomaterials</subject><subject>Particle size</subject><subject>Propane</subject><subject>Spectrum analysis</subject><issn>1687-4110</issn><issn>1687-4129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpF0E1LAzEQBuAgCtbqzbMEPMraTLJJdo-laBVqK1TPSzab2JQ2WZMW9d-7_UBPGcgzM8yL0DWQewDOB5SAHBSypFzIE9QDUcgsB1qe_tVAztFFSktCcl5y2kNmrBKeG5-c_8CvMbQmbpxJOFg8dfOazgR-cTqGDCvf4KnyoVWd0KvOOL_vUN7sP0cq1sHjl-DDt2sMHm7WIbULE026RGdWrZK5Or599P748DZ6yiaz8fNoOMkMA7nJLNOyqBmVpJA2F7bhtGl0bg0AaKGIpEzneakFIUSAonkhqCC15Jo1Nckt66Pbw9w2hs-tSZtqGbbRdysrKIFIKLuzO3V3UAvnG_Xlqja6tYo_FZBql2O1y7E65tjpm4M2nTFW_WsomOQF-wW0yG1W</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Olvera, M. de la L.</creator><creator>Bonilla, José Trinidad Guillen</creator><creator>Moran Lazaro, J. P.</creator><creator>Guillen-Bonilla, Alex</creator><creator>Flores-Martínez, Martín</creator><creator>Guillén Bonilla, Héctor</creator><creator>Rodríguez-Betancourtt, Verónica-M.</creator><creator>González, M. A.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-8029-017X</orcidid><orcidid>https://orcid.org/0000-0003-0041-3932</orcidid><orcidid>https://orcid.org/0000-0002-0048-9198</orcidid></search><sort><creationdate>20170101</creationdate><title>Gas Sensing Properties of NiSb2O6 Micro- and Nanoparticles in Propane and Carbon Monoxide Atmospheres</title><author>Olvera, M. de la L. ; Bonilla, José Trinidad Guillen ; Moran Lazaro, J. P. ; Guillen-Bonilla, Alex ; Flores-Martínez, Martín ; Guillén Bonilla, Héctor ; Rodríguez-Betancourtt, Verónica-M. ; González, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e317t-f3c78b327087f46fd52ddc4fe111c6a0723c449c600061a2486260b75c3db04f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Efficiency</topic><topic>Gases</topic><topic>Morphology</topic><topic>Nanomaterials</topic><topic>Particle size</topic><topic>Propane</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olvera, M. de la L.</creatorcontrib><creatorcontrib>Bonilla, José Trinidad Guillen</creatorcontrib><creatorcontrib>Moran Lazaro, J. P.</creatorcontrib><creatorcontrib>Guillen-Bonilla, Alex</creatorcontrib><creatorcontrib>Flores-Martínez, Martín</creatorcontrib><creatorcontrib>Guillén Bonilla, Héctor</creatorcontrib><creatorcontrib>Rodríguez-Betancourtt, Verónica-M.</creatorcontrib><creatorcontrib>González, M. A.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of nanomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olvera, M. de la L.</au><au>Bonilla, José Trinidad Guillen</au><au>Moran Lazaro, J. P.</au><au>Guillen-Bonilla, Alex</au><au>Flores-Martínez, Martín</au><au>Guillén Bonilla, Héctor</au><au>Rodríguez-Betancourtt, Verónica-M.</au><au>González, M. A.</au><au>Jeyadevan, Balachandran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas Sensing Properties of NiSb2O6 Micro- and Nanoparticles in Propane and Carbon Monoxide Atmospheres</atitle><jtitle>Journal of nanomaterials</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1687-4110</issn><eissn>1687-4129</eissn><abstract>Micro- and nanoparticles of NiSb2O6 were synthesized by the microwave-assisted colloidal method. Nickel nitrate, antimony chloride, ethylenediamine, and ethyl alcohol were used. The oxide was obtained at 600°C and was analyzed by X-ray diffraction (XRD) and Raman spectroscopy, showing a trirutile-type structure with cell parameters a = 4.641 Å, c = 9.223 Å, and a space group P42/mnm (136). Average crystal size was estimated at ~31.19 nm, according to the XRD-peaks. The microstructure was scrutinized by scanning electron microscopy (SEM), observing microrods measuring ~3.32 μm long and ~2.71 μm wide, and microspheres with an average diameter of ~8 μm; the size of the particles shaping the microspheres was measured in the range of ~0.22 to 1.8 μm. Transmission electron microscopy (TEM) revealed that nanoparticles were obtained with sizes in the range of 2 to 20 nm (~10.7 nm on average). Pellets made of oxide’s powders were tested in propane (C3H8) and carbon monoxide (CO) atmospheres at different concentrations and temperatures. The response of the material increased significantly as the temperature and the concentration of the test gases rose. These results show that NiSb2O6 may be a good candidate for gas sensing applications.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2017/8792567</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8029-017X</orcidid><orcidid>https://orcid.org/0000-0003-0041-3932</orcidid><orcidid>https://orcid.org/0000-0002-0048-9198</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-4110 |
ispartof | Journal of nanomaterials, 2017-01, Vol.2017 (2017), p.1-9 |
issn | 1687-4110 1687-4129 |
language | eng |
recordid | cdi_proquest_journals_1910719459 |
source | EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Carbon dioxide Carbon monoxide Efficiency Gases Morphology Nanomaterials Particle size Propane Spectrum analysis |
title | Gas Sensing Properties of NiSb2O6 Micro- and Nanoparticles in Propane and Carbon Monoxide Atmospheres |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A37%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hinda&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20Sensing%20Properties%20of%20NiSb2O6%20Micro-%20and%20Nanoparticles%20in%20Propane%20and%20Carbon%20Monoxide%20Atmospheres&rft.jtitle=Journal%20of%20nanomaterials&rft.au=Olvera,%20M.%20de%20la%20L.&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1687-4110&rft.eissn=1687-4129&rft_id=info:doi/10.1155/2017/8792567&rft_dat=%3Cproquest_hinda%3E4322906465%3C/proquest_hinda%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1910719459&rft_id=info:pmid/&rfr_iscdi=true |