Analysis of Clustering Evaluation Considering Features of Item Response Data Using Data Mining Technique for Setting Cut-Off Scores

The setting of standards is a critical process in educational evaluation, but it is time-consuming and expensive because it is generally conducted by an education experts group. The purpose of this paper is to find a suitable cluster validity index that considers the futures of item response data fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2017-05, Vol.9 (5), p.62
Hauptverfasser: Kim, Byoungwook, Kim, JaMee, Yi, Gangman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 62
container_title Symmetry (Basel)
container_volume 9
creator Kim, Byoungwook
Kim, JaMee
Yi, Gangman
description The setting of standards is a critical process in educational evaluation, but it is time-consuming and expensive because it is generally conducted by an education experts group. The purpose of this paper is to find a suitable cluster validity index that considers the futures of item response data for setting cut-off scores. In this study, nine representative cluster validity indexes were used to evaluate the clustering results. Cohen’s kappa coefficient is used to check the conformity between a set cut-off score using four clustering techniques and a cut-off score set by experts. We compared the cut-off scores by each cluster validity index and by a group of experts. The experimental results show that the entropy-based method considers the features of item response data, so it has a realistic possibility of applying a clustering evaluation method to the setting of standards in criterion referenced evaluation.
doi_str_mv 10.3390/sym9050062
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1910590655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1910590655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-3b1d5e89ca02fded875396cc1c88e2222d04641e701d66b0469ddd53b50d9f403</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqb34CwLehNXJZrPdHMvaaqFSsO15SfOhW7abmmSFnv3jZltB5zJv3jweMw-hWwIPlHJ49Mc9BwaQpxdokMKYJgXn2eU_fI1G3u8gFgOW5TBA35NWNEdfe2wNLpvOB-3q9h1Pv0TTiVDbFpe29bU60zMtQuf0ST0Peo_ftD_EvcZPIgi88b3oBF_rtsdrLT_a-rPT2FiHVzqEni27kCyNwStpo9kNujKi8Xr024doM5uuy5dksXyel5NFIlPOQkK3RDFdcCkgNUqrYswoz6Uksih0GktBlmdEj4GoPN_GgSulGN0yUNxkQIfo7ux7cDZe5EO1s52L__uKcAKMQ85YVN2fVdJZ75021cHVe-GOFYGqz7n6y5n-AKiZcPI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910590655</pqid></control><display><type>article</type><title>Analysis of Clustering Evaluation Considering Features of Item Response Data Using Data Mining Technique for Setting Cut-Off Scores</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kim, Byoungwook ; Kim, JaMee ; Yi, Gangman</creator><creatorcontrib>Kim, Byoungwook ; Kim, JaMee ; Yi, Gangman</creatorcontrib><description>The setting of standards is a critical process in educational evaluation, but it is time-consuming and expensive because it is generally conducted by an education experts group. The purpose of this paper is to find a suitable cluster validity index that considers the futures of item response data for setting cut-off scores. In this study, nine representative cluster validity indexes were used to evaluate the clustering results. Cohen’s kappa coefficient is used to check the conformity between a set cut-off score using four clustering techniques and a cut-off score set by experts. We compared the cut-off scores by each cluster validity index and by a group of experts. The experimental results show that the entropy-based method considers the features of item response data, so it has a realistic possibility of applying a clustering evaluation method to the setting of standards in criterion referenced evaluation.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym9050062</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Clustering ; Clusters ; Coefficients ; Criteria ; Criterion-referenced tests ; Cut-off ; Data mining ; Education ; Entropy ; List brokers ; Validity</subject><ispartof>Symmetry (Basel), 2017-05, Vol.9 (5), p.62</ispartof><rights>Copyright MDPI AG 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-3b1d5e89ca02fded875396cc1c88e2222d04641e701d66b0469ddd53b50d9f403</citedby><cites>FETCH-LOGICAL-c295t-3b1d5e89ca02fded875396cc1c88e2222d04641e701d66b0469ddd53b50d9f403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kim, Byoungwook</creatorcontrib><creatorcontrib>Kim, JaMee</creatorcontrib><creatorcontrib>Yi, Gangman</creatorcontrib><title>Analysis of Clustering Evaluation Considering Features of Item Response Data Using Data Mining Technique for Setting Cut-Off Scores</title><title>Symmetry (Basel)</title><description>The setting of standards is a critical process in educational evaluation, but it is time-consuming and expensive because it is generally conducted by an education experts group. The purpose of this paper is to find a suitable cluster validity index that considers the futures of item response data for setting cut-off scores. In this study, nine representative cluster validity indexes were used to evaluate the clustering results. Cohen’s kappa coefficient is used to check the conformity between a set cut-off score using four clustering techniques and a cut-off score set by experts. We compared the cut-off scores by each cluster validity index and by a group of experts. The experimental results show that the entropy-based method considers the features of item response data, so it has a realistic possibility of applying a clustering evaluation method to the setting of standards in criterion referenced evaluation.</description><subject>Clustering</subject><subject>Clusters</subject><subject>Coefficients</subject><subject>Criteria</subject><subject>Criterion-referenced tests</subject><subject>Cut-off</subject><subject>Data mining</subject><subject>Education</subject><subject>Entropy</subject><subject>List brokers</subject><subject>Validity</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUE1LAzEQDaJgqb34CwLehNXJZrPdHMvaaqFSsO15SfOhW7abmmSFnv3jZltB5zJv3jweMw-hWwIPlHJ49Mc9BwaQpxdokMKYJgXn2eU_fI1G3u8gFgOW5TBA35NWNEdfe2wNLpvOB-3q9h1Pv0TTiVDbFpe29bU60zMtQuf0ST0Peo_ftD_EvcZPIgi88b3oBF_rtsdrLT_a-rPT2FiHVzqEni27kCyNwStpo9kNujKi8Xr024doM5uuy5dksXyel5NFIlPOQkK3RDFdcCkgNUqrYswoz6Uksih0GktBlmdEj4GoPN_GgSulGN0yUNxkQIfo7ux7cDZe5EO1s52L__uKcAKMQ85YVN2fVdJZ75021cHVe-GOFYGqz7n6y5n-AKiZcPI</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Kim, Byoungwook</creator><creator>Kim, JaMee</creator><creator>Yi, Gangman</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170501</creationdate><title>Analysis of Clustering Evaluation Considering Features of Item Response Data Using Data Mining Technique for Setting Cut-Off Scores</title><author>Kim, Byoungwook ; Kim, JaMee ; Yi, Gangman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-3b1d5e89ca02fded875396cc1c88e2222d04641e701d66b0469ddd53b50d9f403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Clustering</topic><topic>Clusters</topic><topic>Coefficients</topic><topic>Criteria</topic><topic>Criterion-referenced tests</topic><topic>Cut-off</topic><topic>Data mining</topic><topic>Education</topic><topic>Entropy</topic><topic>List brokers</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Byoungwook</creatorcontrib><creatorcontrib>Kim, JaMee</creatorcontrib><creatorcontrib>Yi, Gangman</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Byoungwook</au><au>Kim, JaMee</au><au>Yi, Gangman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Clustering Evaluation Considering Features of Item Response Data Using Data Mining Technique for Setting Cut-Off Scores</atitle><jtitle>Symmetry (Basel)</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>9</volume><issue>5</issue><spage>62</spage><pages>62-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>The setting of standards is a critical process in educational evaluation, but it is time-consuming and expensive because it is generally conducted by an education experts group. The purpose of this paper is to find a suitable cluster validity index that considers the futures of item response data for setting cut-off scores. In this study, nine representative cluster validity indexes were used to evaluate the clustering results. Cohen’s kappa coefficient is used to check the conformity between a set cut-off score using four clustering techniques and a cut-off score set by experts. We compared the cut-off scores by each cluster validity index and by a group of experts. The experimental results show that the entropy-based method considers the features of item response data, so it has a realistic possibility of applying a clustering evaluation method to the setting of standards in criterion referenced evaluation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym9050062</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-8994
ispartof Symmetry (Basel), 2017-05, Vol.9 (5), p.62
issn 2073-8994
2073-8994
language eng
recordid cdi_proquest_journals_1910590655
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Clustering
Clusters
Coefficients
Criteria
Criterion-referenced tests
Cut-off
Data mining
Education
Entropy
List brokers
Validity
title Analysis of Clustering Evaluation Considering Features of Item Response Data Using Data Mining Technique for Setting Cut-Off Scores
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Clustering%20Evaluation%20Considering%20Features%20of%20Item%20Response%20Data%20Using%20Data%20Mining%20Technique%20for%20Setting%20Cut-Off%20Scores&rft.jtitle=Symmetry%20(Basel)&rft.au=Kim,%20Byoungwook&rft.date=2017-05-01&rft.volume=9&rft.issue=5&rft.spage=62&rft.pages=62-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym9050062&rft_dat=%3Cproquest_cross%3E1910590655%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1910590655&rft_id=info:pmid/&rfr_iscdi=true