Rigidity theory for biomolecules: concepts, software, and applications

The mechanical heterogeneity of biomolecular structures is intimately linked to their diverse biological functions. Applying rigidity theory to biomolecules identifies this heterogeneous composition of flexible and rigid regions, which can aid in the understanding of biomolecular stability and long‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. Computational molecular science 2017-07, Vol.7 (4), p.e1311-n/a
Hauptverfasser: Hermans, Susanne M.A., Pfleger, Christopher, Nutschel, Christina, Hanke, Christian A., Gohlke, Holger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page e1311
container_title Wiley interdisciplinary reviews. Computational molecular science
container_volume 7
creator Hermans, Susanne M.A.
Pfleger, Christopher
Nutschel, Christina
Hanke, Christian A.
Gohlke, Holger
description The mechanical heterogeneity of biomolecular structures is intimately linked to their diverse biological functions. Applying rigidity theory to biomolecules identifies this heterogeneous composition of flexible and rigid regions, which can aid in the understanding of biomolecular stability and long‐ranged information transfer through biomolecules, and yield valuable information for rational drug design and protein engineering. We review fundamental concepts in rigidity theory, ways to represent biomolecules as constraint networks, and methodological and algorithmic developments for analyzing such networks and linking the results to biomolecular function. Software packages for performing rigidity analyses on biomolecules in an efficient, automated way are described, as are rigidity analyses on biomolecules including the ribosome, viruses, or transmembrane proteins. The analyses address questions of allosteric mechanisms, mutation effects on (thermo‐)stability, protein (un‐)folding, and coarse‐graining of biomolecules. We advocate that the application of rigidity theory to biomolecules has matured in such a way that it could be broadly applied as a computational biophysical method to scrutinize biomolecular function from a structure‐based point of view and to complement approaches focused on biomolecular dynamics. We discuss possibilities to improve constraint network representations and to perform large‐scale and prospective studies. WIREs Comput Mol Sci 2017, 7:e1311. doi: 10.1002/wcms.1311 This article is categorized under: Structure and Mechanism > Computational Biochemistry and Biophysics Computer and Information Science > Computer Algorithms and Programming Software > Molecular Modeling Analyzing biomolecular constraint networks provides insights into protein (un‐)folding, (thermo‐)stability, and allosteric mechanisms and aids in understanding biomolecular function.
doi_str_mv 10.1002/wcms.1311
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1910349732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1910349732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2971-107828545df94d3c5b8a92a1e7301fb73d0fcb6d24c4c322d3c865d188ab19943</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCpbag_8g4Eno1kyS7SbepFgVKoIfeAzZJKsp282abCn7791a8eZcZg7PzMCL0DmQGRBCr3Zmk2bAAI7QCIpcZkQIfvw3F_NTNElpTYbiEiiDEVo--w9vfdfj7tOF2OMqRFz6sAm1M9vapWtsQmNc26UpTqHqdjq6KdaNxbpta29050OTztBJpevkJr99jN6Wt6-L-2z1dPewuFllhsoCMiCFoCLnua0kt8zkpdCSanAFI1CVBbOkMuXcUm64YZQORMxzC0LoEqTkbIwuDnfbGL62LnVqHbaxGV4qkEAYlwWjg7o8KBNDStFVqo1-o2OvgKh9UmqflNonNdirg9352vX_Q_W-eHz52fgGuVNqCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910349732</pqid></control><display><type>article</type><title>Rigidity theory for biomolecules: concepts, software, and applications</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hermans, Susanne M.A. ; Pfleger, Christopher ; Nutschel, Christina ; Hanke, Christian A. ; Gohlke, Holger</creator><creatorcontrib>Hermans, Susanne M.A. ; Pfleger, Christopher ; Nutschel, Christina ; Hanke, Christian A. ; Gohlke, Holger</creatorcontrib><description>The mechanical heterogeneity of biomolecular structures is intimately linked to their diverse biological functions. Applying rigidity theory to biomolecules identifies this heterogeneous composition of flexible and rigid regions, which can aid in the understanding of biomolecular stability and long‐ranged information transfer through biomolecules, and yield valuable information for rational drug design and protein engineering. We review fundamental concepts in rigidity theory, ways to represent biomolecules as constraint networks, and methodological and algorithmic developments for analyzing such networks and linking the results to biomolecular function. Software packages for performing rigidity analyses on biomolecules in an efficient, automated way are described, as are rigidity analyses on biomolecules including the ribosome, viruses, or transmembrane proteins. The analyses address questions of allosteric mechanisms, mutation effects on (thermo‐)stability, protein (un‐)folding, and coarse‐graining of biomolecules. We advocate that the application of rigidity theory to biomolecules has matured in such a way that it could be broadly applied as a computational biophysical method to scrutinize biomolecular function from a structure‐based point of view and to complement approaches focused on biomolecular dynamics. We discuss possibilities to improve constraint network representations and to perform large‐scale and prospective studies. WIREs Comput Mol Sci 2017, 7:e1311. doi: 10.1002/wcms.1311 This article is categorized under: Structure and Mechanism &gt; Computational Biochemistry and Biophysics Computer and Information Science &gt; Computer Algorithms and Programming Software &gt; Molecular Modeling Analyzing biomolecular constraint networks provides insights into protein (un‐)folding, (thermo‐)stability, and allosteric mechanisms and aids in understanding biomolecular function.</description><identifier>ISSN: 1759-0876</identifier><identifier>EISSN: 1759-0884</identifier><identifier>DOI: 10.1002/wcms.1311</identifier><language>eng</language><publisher>Hoboken, USA: Wiley Periodicals, Inc</publisher><subject>Algorithms ; Allosteric properties ; Applications programs ; Biomolecules ; Biophysics ; Complement ; Composition ; Computer applications ; Computer programs ; Design analysis ; Design engineering ; Drug development ; Dynamics ; Folding ; Granulation ; Heterogeneity ; Information transfer ; Mathematical analysis ; Membrane proteins ; Modelling ; Mutation ; Networks ; Protein engineering ; Protein folding ; Proteins ; Representations ; Reviews ; Ribosomes ; Rigidity ; Software ; Software packages ; Stability ; Stability analysis ; Structure-function relationships ; Theories ; Viruses</subject><ispartof>Wiley interdisciplinary reviews. Computational molecular science, 2017-07, Vol.7 (4), p.e1311-n/a</ispartof><rights>2017 John Wiley &amp; Sons, Ltd</rights><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2971-107828545df94d3c5b8a92a1e7301fb73d0fcb6d24c4c322d3c865d188ab19943</citedby><cites>FETCH-LOGICAL-c2971-107828545df94d3c5b8a92a1e7301fb73d0fcb6d24c4c322d3c865d188ab19943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwcms.1311$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwcms.1311$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Hermans, Susanne M.A.</creatorcontrib><creatorcontrib>Pfleger, Christopher</creatorcontrib><creatorcontrib>Nutschel, Christina</creatorcontrib><creatorcontrib>Hanke, Christian A.</creatorcontrib><creatorcontrib>Gohlke, Holger</creatorcontrib><title>Rigidity theory for biomolecules: concepts, software, and applications</title><title>Wiley interdisciplinary reviews. Computational molecular science</title><description>The mechanical heterogeneity of biomolecular structures is intimately linked to their diverse biological functions. Applying rigidity theory to biomolecules identifies this heterogeneous composition of flexible and rigid regions, which can aid in the understanding of biomolecular stability and long‐ranged information transfer through biomolecules, and yield valuable information for rational drug design and protein engineering. We review fundamental concepts in rigidity theory, ways to represent biomolecules as constraint networks, and methodological and algorithmic developments for analyzing such networks and linking the results to biomolecular function. Software packages for performing rigidity analyses on biomolecules in an efficient, automated way are described, as are rigidity analyses on biomolecules including the ribosome, viruses, or transmembrane proteins. The analyses address questions of allosteric mechanisms, mutation effects on (thermo‐)stability, protein (un‐)folding, and coarse‐graining of biomolecules. We advocate that the application of rigidity theory to biomolecules has matured in such a way that it could be broadly applied as a computational biophysical method to scrutinize biomolecular function from a structure‐based point of view and to complement approaches focused on biomolecular dynamics. We discuss possibilities to improve constraint network representations and to perform large‐scale and prospective studies. WIREs Comput Mol Sci 2017, 7:e1311. doi: 10.1002/wcms.1311 This article is categorized under: Structure and Mechanism &gt; Computational Biochemistry and Biophysics Computer and Information Science &gt; Computer Algorithms and Programming Software &gt; Molecular Modeling Analyzing biomolecular constraint networks provides insights into protein (un‐)folding, (thermo‐)stability, and allosteric mechanisms and aids in understanding biomolecular function.</description><subject>Algorithms</subject><subject>Allosteric properties</subject><subject>Applications programs</subject><subject>Biomolecules</subject><subject>Biophysics</subject><subject>Complement</subject><subject>Composition</subject><subject>Computer applications</subject><subject>Computer programs</subject><subject>Design analysis</subject><subject>Design engineering</subject><subject>Drug development</subject><subject>Dynamics</subject><subject>Folding</subject><subject>Granulation</subject><subject>Heterogeneity</subject><subject>Information transfer</subject><subject>Mathematical analysis</subject><subject>Membrane proteins</subject><subject>Modelling</subject><subject>Mutation</subject><subject>Networks</subject><subject>Protein engineering</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Representations</subject><subject>Reviews</subject><subject>Ribosomes</subject><subject>Rigidity</subject><subject>Software</subject><subject>Software packages</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Structure-function relationships</subject><subject>Theories</subject><subject>Viruses</subject><issn>1759-0876</issn><issn>1759-0884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCpbag_8g4Eno1kyS7SbepFgVKoIfeAzZJKsp282abCn7791a8eZcZg7PzMCL0DmQGRBCr3Zmk2bAAI7QCIpcZkQIfvw3F_NTNElpTYbiEiiDEVo--w9vfdfj7tOF2OMqRFz6sAm1M9vapWtsQmNc26UpTqHqdjq6KdaNxbpta29050OTztBJpevkJr99jN6Wt6-L-2z1dPewuFllhsoCMiCFoCLnua0kt8zkpdCSanAFI1CVBbOkMuXcUm64YZQORMxzC0LoEqTkbIwuDnfbGL62LnVqHbaxGV4qkEAYlwWjg7o8KBNDStFVqo1-o2OvgKh9UmqflNonNdirg9352vX_Q_W-eHz52fgGuVNqCA</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Hermans, Susanne M.A.</creator><creator>Pfleger, Christopher</creator><creator>Nutschel, Christina</creator><creator>Hanke, Christian A.</creator><creator>Gohlke, Holger</creator><general>Wiley Periodicals, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>JQ2</scope><scope>L.G</scope></search><sort><creationdate>201707</creationdate><title>Rigidity theory for biomolecules: concepts, software, and applications</title><author>Hermans, Susanne M.A. ; Pfleger, Christopher ; Nutschel, Christina ; Hanke, Christian A. ; Gohlke, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2971-107828545df94d3c5b8a92a1e7301fb73d0fcb6d24c4c322d3c865d188ab19943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Allosteric properties</topic><topic>Applications programs</topic><topic>Biomolecules</topic><topic>Biophysics</topic><topic>Complement</topic><topic>Composition</topic><topic>Computer applications</topic><topic>Computer programs</topic><topic>Design analysis</topic><topic>Design engineering</topic><topic>Drug development</topic><topic>Dynamics</topic><topic>Folding</topic><topic>Granulation</topic><topic>Heterogeneity</topic><topic>Information transfer</topic><topic>Mathematical analysis</topic><topic>Membrane proteins</topic><topic>Modelling</topic><topic>Mutation</topic><topic>Networks</topic><topic>Protein engineering</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Representations</topic><topic>Reviews</topic><topic>Ribosomes</topic><topic>Rigidity</topic><topic>Software</topic><topic>Software packages</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Structure-function relationships</topic><topic>Theories</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hermans, Susanne M.A.</creatorcontrib><creatorcontrib>Pfleger, Christopher</creatorcontrib><creatorcontrib>Nutschel, Christina</creatorcontrib><creatorcontrib>Hanke, Christian A.</creatorcontrib><creatorcontrib>Gohlke, Holger</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Wiley interdisciplinary reviews. Computational molecular science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hermans, Susanne M.A.</au><au>Pfleger, Christopher</au><au>Nutschel, Christina</au><au>Hanke, Christian A.</au><au>Gohlke, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigidity theory for biomolecules: concepts, software, and applications</atitle><jtitle>Wiley interdisciplinary reviews. Computational molecular science</jtitle><date>2017-07</date><risdate>2017</risdate><volume>7</volume><issue>4</issue><spage>e1311</spage><epage>n/a</epage><pages>e1311-n/a</pages><issn>1759-0876</issn><eissn>1759-0884</eissn><abstract>The mechanical heterogeneity of biomolecular structures is intimately linked to their diverse biological functions. Applying rigidity theory to biomolecules identifies this heterogeneous composition of flexible and rigid regions, which can aid in the understanding of biomolecular stability and long‐ranged information transfer through biomolecules, and yield valuable information for rational drug design and protein engineering. We review fundamental concepts in rigidity theory, ways to represent biomolecules as constraint networks, and methodological and algorithmic developments for analyzing such networks and linking the results to biomolecular function. Software packages for performing rigidity analyses on biomolecules in an efficient, automated way are described, as are rigidity analyses on biomolecules including the ribosome, viruses, or transmembrane proteins. The analyses address questions of allosteric mechanisms, mutation effects on (thermo‐)stability, protein (un‐)folding, and coarse‐graining of biomolecules. We advocate that the application of rigidity theory to biomolecules has matured in such a way that it could be broadly applied as a computational biophysical method to scrutinize biomolecular function from a structure‐based point of view and to complement approaches focused on biomolecular dynamics. We discuss possibilities to improve constraint network representations and to perform large‐scale and prospective studies. WIREs Comput Mol Sci 2017, 7:e1311. doi: 10.1002/wcms.1311 This article is categorized under: Structure and Mechanism &gt; Computational Biochemistry and Biophysics Computer and Information Science &gt; Computer Algorithms and Programming Software &gt; Molecular Modeling Analyzing biomolecular constraint networks provides insights into protein (un‐)folding, (thermo‐)stability, and allosteric mechanisms and aids in understanding biomolecular function.</abstract><cop>Hoboken, USA</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1002/wcms.1311</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1759-0876
ispartof Wiley interdisciplinary reviews. Computational molecular science, 2017-07, Vol.7 (4), p.e1311-n/a
issn 1759-0876
1759-0884
language eng
recordid cdi_proquest_journals_1910349732
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Allosteric properties
Applications programs
Biomolecules
Biophysics
Complement
Composition
Computer applications
Computer programs
Design analysis
Design engineering
Drug development
Dynamics
Folding
Granulation
Heterogeneity
Information transfer
Mathematical analysis
Membrane proteins
Modelling
Mutation
Networks
Protein engineering
Protein folding
Proteins
Representations
Reviews
Ribosomes
Rigidity
Software
Software packages
Stability
Stability analysis
Structure-function relationships
Theories
Viruses
title Rigidity theory for biomolecules: concepts, software, and applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A36%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigidity%20theory%20for%20biomolecules:%20concepts,%20software,%20and%20applications&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Computational%20molecular%20science&rft.au=Hermans,%20Susanne%20M.A.&rft.date=2017-07&rft.volume=7&rft.issue=4&rft.spage=e1311&rft.epage=n/a&rft.pages=e1311-n/a&rft.issn=1759-0876&rft.eissn=1759-0884&rft_id=info:doi/10.1002/wcms.1311&rft_dat=%3Cproquest_cross%3E1910349732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1910349732&rft_id=info:pmid/&rfr_iscdi=true