Thermal properties of metal matrix composites with planar distribution of carbon fibres

High thermal conductivity (TC) and a tunable coefficient of thermal expansion are essential properties for heat management materials operating in a wide temperature range. We combine both properties in a composite with a low‐density metal matrix reinforced with pitch‐based carbon fibres. The thermal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. PSS-RRL. Rapid research letters 2017-06, Vol.11 (6), p.n/a
Hauptverfasser: Oddone, Valerio, Reich, Stephanie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Physica status solidi. PSS-RRL. Rapid research letters
container_volume 11
creator Oddone, Valerio
Reich, Stephanie
description High thermal conductivity (TC) and a tunable coefficient of thermal expansion are essential properties for heat management materials operating in a wide temperature range. We combine both properties in a composite with a low‐density metal matrix reinforced with pitch‐based carbon fibres. The thermal conductivity of the metal matrix was increased by 50%, the thermal expansion coefficient was reduced by a factor of five. The samples were produced by powder metallurgy and have a planar random distribution of fibres, leading to high performance in two dimensions. Surface of a metal matrix composite with 50% carbon fibre (CF) strengthening (optical microscope, 20× magnification). For the cooling of electronic components, copper is commonly used due to its excellent thermal conductivity. However, the high thermal expansion of copper might cause a mechanical failure of the cooled component. The authors present a material out of metal and carbon fibres which combines high thermal conductivity and low thermal expansion. As a side effect, this material is over four times lighter than copper.
doi_str_mv 10.1002/pssr.201700090
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1910328186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1910328186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3940-a28d583b06d072d7e17b9c1da5a4e78689159bdeafed2f52bff5df8cf48260223</originalsourceid><addsrcrecordid>eNqFUE1LAzEUDKJgrV49L3je-pL9SHKUolYoKLbiMSSbhKbsNmuypfbfm1KpR09veDPzPgahWwwTDEDu-xjDhACmAMDhDI0wq0leEwrnJ1yVl-gqxjVAxWlZjNDncmVCJ9usD743YXAmZt5mnRlSr5NDcN9Z47veRzckaueGVda3ciNDpl1MtNoOzm8OnkYGlZB1Kph4jS6sbKO5-a1j9PH0uJzO8vnr88v0YZ43BS8hl4TpihUKag2UaGowVbzBWlayNJTVjOOKK22kNZrYiihrK21ZY0tGaiCkGKO749x0_9fWxEGs_TZs0kqBOYaCsPR5Uk2Oqib4lJKxog-uk2EvMIhDeOIQnjiFlwz8aNi51uz_UYu3xeL9z_sD4Sl1dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910328186</pqid></control><display><type>article</type><title>Thermal properties of metal matrix composites with planar distribution of carbon fibres</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Oddone, Valerio ; Reich, Stephanie</creator><creatorcontrib>Oddone, Valerio ; Reich, Stephanie</creatorcontrib><description>High thermal conductivity (TC) and a tunable coefficient of thermal expansion are essential properties for heat management materials operating in a wide temperature range. We combine both properties in a composite with a low‐density metal matrix reinforced with pitch‐based carbon fibres. The thermal conductivity of the metal matrix was increased by 50%, the thermal expansion coefficient was reduced by a factor of five. The samples were produced by powder metallurgy and have a planar random distribution of fibres, leading to high performance in two dimensions. Surface of a metal matrix composite with 50% carbon fibre (CF) strengthening (optical microscope, 20× magnification). For the cooling of electronic components, copper is commonly used due to its excellent thermal conductivity. However, the high thermal expansion of copper might cause a mechanical failure of the cooled component. The authors present a material out of metal and carbon fibres which combines high thermal conductivity and low thermal expansion. As a side effect, this material is over four times lighter than copper.</description><identifier>ISSN: 1862-6254</identifier><identifier>EISSN: 1862-6270</identifier><identifier>DOI: 10.1002/pssr.201700090</identifier><language>eng</language><publisher>Berlin: WILEY?VCH Verlag Berlin GmbH</publisher><subject>Carbon ; Carbon fiber reinforced plastics ; carbon fibres ; Densification ; Fibers ; Heat conductivity ; Heat transfer ; Management ; Metal matrix composites ; Powder metallurgy ; Solid state physics ; spark plasma sintering ; Thermal conductivity ; Thermal expansion ; Thermodynamic properties</subject><ispartof>Physica status solidi. PSS-RRL. Rapid research letters, 2017-06, Vol.11 (6), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3940-a28d583b06d072d7e17b9c1da5a4e78689159bdeafed2f52bff5df8cf48260223</citedby><cites>FETCH-LOGICAL-c3940-a28d583b06d072d7e17b9c1da5a4e78689159bdeafed2f52bff5df8cf48260223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssr.201700090$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssr.201700090$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Oddone, Valerio</creatorcontrib><creatorcontrib>Reich, Stephanie</creatorcontrib><title>Thermal properties of metal matrix composites with planar distribution of carbon fibres</title><title>Physica status solidi. PSS-RRL. Rapid research letters</title><description>High thermal conductivity (TC) and a tunable coefficient of thermal expansion are essential properties for heat management materials operating in a wide temperature range. We combine both properties in a composite with a low‐density metal matrix reinforced with pitch‐based carbon fibres. The thermal conductivity of the metal matrix was increased by 50%, the thermal expansion coefficient was reduced by a factor of five. The samples were produced by powder metallurgy and have a planar random distribution of fibres, leading to high performance in two dimensions. Surface of a metal matrix composite with 50% carbon fibre (CF) strengthening (optical microscope, 20× magnification). For the cooling of electronic components, copper is commonly used due to its excellent thermal conductivity. However, the high thermal expansion of copper might cause a mechanical failure of the cooled component. The authors present a material out of metal and carbon fibres which combines high thermal conductivity and low thermal expansion. As a side effect, this material is over four times lighter than copper.</description><subject>Carbon</subject><subject>Carbon fiber reinforced plastics</subject><subject>carbon fibres</subject><subject>Densification</subject><subject>Fibers</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Management</subject><subject>Metal matrix composites</subject><subject>Powder metallurgy</subject><subject>Solid state physics</subject><subject>spark plasma sintering</subject><subject>Thermal conductivity</subject><subject>Thermal expansion</subject><subject>Thermodynamic properties</subject><issn>1862-6254</issn><issn>1862-6270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEUDKJgrV49L3je-pL9SHKUolYoKLbiMSSbhKbsNmuypfbfm1KpR09veDPzPgahWwwTDEDu-xjDhACmAMDhDI0wq0leEwrnJ1yVl-gqxjVAxWlZjNDncmVCJ9usD743YXAmZt5mnRlSr5NDcN9Z47veRzckaueGVda3ciNDpl1MtNoOzm8OnkYGlZB1Kph4jS6sbKO5-a1j9PH0uJzO8vnr88v0YZ43BS8hl4TpihUKag2UaGowVbzBWlayNJTVjOOKK22kNZrYiihrK21ZY0tGaiCkGKO749x0_9fWxEGs_TZs0kqBOYaCsPR5Uk2Oqib4lJKxog-uk2EvMIhDeOIQnjiFlwz8aNi51uz_UYu3xeL9z_sD4Sl1dA</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Oddone, Valerio</creator><creator>Reich, Stephanie</creator><general>WILEY?VCH Verlag Berlin GmbH</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201706</creationdate><title>Thermal properties of metal matrix composites with planar distribution of carbon fibres</title><author>Oddone, Valerio ; Reich, Stephanie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3940-a28d583b06d072d7e17b9c1da5a4e78689159bdeafed2f52bff5df8cf48260223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carbon</topic><topic>Carbon fiber reinforced plastics</topic><topic>carbon fibres</topic><topic>Densification</topic><topic>Fibers</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Management</topic><topic>Metal matrix composites</topic><topic>Powder metallurgy</topic><topic>Solid state physics</topic><topic>spark plasma sintering</topic><topic>Thermal conductivity</topic><topic>Thermal expansion</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oddone, Valerio</creatorcontrib><creatorcontrib>Reich, Stephanie</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oddone, Valerio</au><au>Reich, Stephanie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal properties of metal matrix composites with planar distribution of carbon fibres</atitle><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle><date>2017-06</date><risdate>2017</risdate><volume>11</volume><issue>6</issue><epage>n/a</epage><issn>1862-6254</issn><eissn>1862-6270</eissn><abstract>High thermal conductivity (TC) and a tunable coefficient of thermal expansion are essential properties for heat management materials operating in a wide temperature range. We combine both properties in a composite with a low‐density metal matrix reinforced with pitch‐based carbon fibres. The thermal conductivity of the metal matrix was increased by 50%, the thermal expansion coefficient was reduced by a factor of five. The samples were produced by powder metallurgy and have a planar random distribution of fibres, leading to high performance in two dimensions. Surface of a metal matrix composite with 50% carbon fibre (CF) strengthening (optical microscope, 20× magnification). For the cooling of electronic components, copper is commonly used due to its excellent thermal conductivity. However, the high thermal expansion of copper might cause a mechanical failure of the cooled component. The authors present a material out of metal and carbon fibres which combines high thermal conductivity and low thermal expansion. As a side effect, this material is over four times lighter than copper.</abstract><cop>Berlin</cop><pub>WILEY?VCH Verlag Berlin GmbH</pub><doi>10.1002/pssr.201700090</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1862-6254
ispartof Physica status solidi. PSS-RRL. Rapid research letters, 2017-06, Vol.11 (6), p.n/a
issn 1862-6254
1862-6270
language eng
recordid cdi_proquest_journals_1910328186
source Wiley Online Library Journals Frontfile Complete
subjects Carbon
Carbon fiber reinforced plastics
carbon fibres
Densification
Fibers
Heat conductivity
Heat transfer
Management
Metal matrix composites
Powder metallurgy
Solid state physics
spark plasma sintering
Thermal conductivity
Thermal expansion
Thermodynamic properties
title Thermal properties of metal matrix composites with planar distribution of carbon fibres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A30%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20properties%20of%20metal%20matrix%20composites%20with%20planar%20distribution%20of%20carbon%20fibres&rft.jtitle=Physica%20status%20solidi.%20PSS-RRL.%20Rapid%20research%20letters&rft.au=Oddone,%20Valerio&rft.date=2017-06&rft.volume=11&rft.issue=6&rft.epage=n/a&rft.issn=1862-6254&rft.eissn=1862-6270&rft_id=info:doi/10.1002/pssr.201700090&rft_dat=%3Cproquest_cross%3E1910328186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1910328186&rft_id=info:pmid/&rfr_iscdi=true