Effect of solar dynamics parameters on the formation of substorm activity
An algorithm for retrieving the AL index dynamics from the parameters of solar-wind plasma and the interplanetary magnetic field (IMF) has been developed. Along with other geoeffective parameters of the solar wind, an integral parameter in the form of the cumulative sum Σ[N* V 2 ] is used to determi...
Gespeichert in:
Veröffentlicht in: | Geomagnetism and Aeronomy 2017-05, Vol.57 (3), p.251-256 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 256 |
---|---|
container_issue | 3 |
container_start_page | 251 |
container_title | Geomagnetism and Aeronomy |
container_volume | 57 |
creator | Barkhatov, N. A. Vorob’ev, V. G. Revunov, S. E. Yagodkina, O. I. |
description | An algorithm for retrieving the
AL
index dynamics from the parameters of solar-wind plasma and the interplanetary magnetic field (IMF) has been developed. Along with other geoeffective parameters of the solar wind, an integral parameter in the form of the cumulative sum Σ[N*
V
2
] is used to determine the process of substorm formation. The algorithm is incorporated into a framework developed to retrieve the
AL
index of an Elman-type artificial neural network (ANN) containing an additional layer of neurons that provides an “internal memory” of the prehistory of the dynamical process to be retrieved. The ANN is trained on data of 70 eight-hour-long time intervals, including the periods of isolated magnetospheric substorms. The efficiency of this approach is demonstrated by numerical neural-network experiments on retrieving the dynamics of the
AL
index from the of solar wind and IMF parameters during substorms. |
doi_str_mv | 10.1134/S0016793217030021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1909111661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1909111661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-553c63870d4f23d205d9ac5616c2bc41530af7fc71b94b53189fa6c290d7fce93</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMoWFd_gLeA5-pM06Sboyyru7DgQQVvJU0T7bJtapIV9t-bsh4E8TTMvO-9gUfINcItIivvngFQVJIVWAEDKPCEZMg5z0XJ305JNsn5pJ-TixC2kCDOMSPrpbVGR-osDW6nPG0Pg-o7HeiovOpNND5QN9D4Yah1vlexS9tE75sQ04EqHbuvLh4uyZlVu2CufuaMvD4sXxarfPP0uF7cb3LNUMScc6YFm1fQlrZgbQG8lUpzgUIXjS6RM1C2srrCRpYNZziXViVNQpuuRrIZuTnmjt597k2I9dbt_ZBe1ihBIqIQmCg8Utq7ELyx9ei7XvlDjVBPjdV_Gkue4ugJiR3ejf-V_K_pGy_XbII</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1909111661</pqid></control><display><type>article</type><title>Effect of solar dynamics parameters on the formation of substorm activity</title><source>Springer Nature - Complete Springer Journals</source><creator>Barkhatov, N. A. ; Vorob’ev, V. G. ; Revunov, S. E. ; Yagodkina, O. I.</creator><creatorcontrib>Barkhatov, N. A. ; Vorob’ev, V. G. ; Revunov, S. E. ; Yagodkina, O. I.</creatorcontrib><description>An algorithm for retrieving the
AL
index dynamics from the parameters of solar-wind plasma and the interplanetary magnetic field (IMF) has been developed. Along with other geoeffective parameters of the solar wind, an integral parameter in the form of the cumulative sum Σ[N*
V
2
] is used to determine the process of substorm formation. The algorithm is incorporated into a framework developed to retrieve the
AL
index of an Elman-type artificial neural network (ANN) containing an additional layer of neurons that provides an “internal memory” of the prehistory of the dynamical process to be retrieved. The ANN is trained on data of 70 eight-hour-long time intervals, including the periods of isolated magnetospheric substorms. The efficiency of this approach is demonstrated by numerical neural-network experiments on retrieving the dynamics of the
AL
index from the of solar wind and IMF parameters during substorms.</description><identifier>ISSN: 0016-7932</identifier><identifier>EISSN: 1555-645X</identifier><identifier>EISSN: 0016-7940</identifier><identifier>DOI: 10.1134/S0016793217030021</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Artificial neural networks ; Dynamics ; Earth and Environmental Science ; Earth Sciences ; Efficiency ; Geophysics/Geodesy ; Interplanetary magnetic field ; Learning theory ; Magnetic fields ; Magnetospheres ; Magnetospheric substorms ; Neural networks ; Neurons ; Solar activity ; Solar flares ; Solar wind ; Storms</subject><ispartof>Geomagnetism and Aeronomy, 2017-05, Vol.57 (3), p.251-256</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Geomagnetism and Aeronomy is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-553c63870d4f23d205d9ac5616c2bc41530af7fc71b94b53189fa6c290d7fce93</citedby><cites>FETCH-LOGICAL-c316t-553c63870d4f23d205d9ac5616c2bc41530af7fc71b94b53189fa6c290d7fce93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0016793217030021$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0016793217030021$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Barkhatov, N. A.</creatorcontrib><creatorcontrib>Vorob’ev, V. G.</creatorcontrib><creatorcontrib>Revunov, S. E.</creatorcontrib><creatorcontrib>Yagodkina, O. I.</creatorcontrib><title>Effect of solar dynamics parameters on the formation of substorm activity</title><title>Geomagnetism and Aeronomy</title><addtitle>Geomagn. Aeron</addtitle><description>An algorithm for retrieving the
AL
index dynamics from the parameters of solar-wind plasma and the interplanetary magnetic field (IMF) has been developed. Along with other geoeffective parameters of the solar wind, an integral parameter in the form of the cumulative sum Σ[N*
V
2
] is used to determine the process of substorm formation. The algorithm is incorporated into a framework developed to retrieve the
AL
index of an Elman-type artificial neural network (ANN) containing an additional layer of neurons that provides an “internal memory” of the prehistory of the dynamical process to be retrieved. The ANN is trained on data of 70 eight-hour-long time intervals, including the periods of isolated magnetospheric substorms. The efficiency of this approach is demonstrated by numerical neural-network experiments on retrieving the dynamics of the
AL
index from the of solar wind and IMF parameters during substorms.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Dynamics</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Efficiency</subject><subject>Geophysics/Geodesy</subject><subject>Interplanetary magnetic field</subject><subject>Learning theory</subject><subject>Magnetic fields</subject><subject>Magnetospheres</subject><subject>Magnetospheric substorms</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Solar activity</subject><subject>Solar flares</subject><subject>Solar wind</subject><subject>Storms</subject><issn>0016-7932</issn><issn>1555-645X</issn><issn>0016-7940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEFLxDAQhYMoWFd_gLeA5-pM06Sboyyru7DgQQVvJU0T7bJtapIV9t-bsh4E8TTMvO-9gUfINcItIivvngFQVJIVWAEDKPCEZMg5z0XJ305JNsn5pJ-TixC2kCDOMSPrpbVGR-osDW6nPG0Pg-o7HeiovOpNND5QN9D4Yah1vlexS9tE75sQ04EqHbuvLh4uyZlVu2CufuaMvD4sXxarfPP0uF7cb3LNUMScc6YFm1fQlrZgbQG8lUpzgUIXjS6RM1C2srrCRpYNZziXViVNQpuuRrIZuTnmjt597k2I9dbt_ZBe1ihBIqIQmCg8Utq7ELyx9ei7XvlDjVBPjdV_Gkue4ugJiR3ejf-V_K_pGy_XbII</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Barkhatov, N. A.</creator><creator>Vorob’ev, V. G.</creator><creator>Revunov, S. E.</creator><creator>Yagodkina, O. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20170501</creationdate><title>Effect of solar dynamics parameters on the formation of substorm activity</title><author>Barkhatov, N. A. ; Vorob’ev, V. G. ; Revunov, S. E. ; Yagodkina, O. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-553c63870d4f23d205d9ac5616c2bc41530af7fc71b94b53189fa6c290d7fce93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Dynamics</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Efficiency</topic><topic>Geophysics/Geodesy</topic><topic>Interplanetary magnetic field</topic><topic>Learning theory</topic><topic>Magnetic fields</topic><topic>Magnetospheres</topic><topic>Magnetospheric substorms</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Solar activity</topic><topic>Solar flares</topic><topic>Solar wind</topic><topic>Storms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barkhatov, N. A.</creatorcontrib><creatorcontrib>Vorob’ev, V. G.</creatorcontrib><creatorcontrib>Revunov, S. E.</creatorcontrib><creatorcontrib>Yagodkina, O. I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Geomagnetism and Aeronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barkhatov, N. A.</au><au>Vorob’ev, V. G.</au><au>Revunov, S. E.</au><au>Yagodkina, O. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of solar dynamics parameters on the formation of substorm activity</atitle><jtitle>Geomagnetism and Aeronomy</jtitle><stitle>Geomagn. Aeron</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>57</volume><issue>3</issue><spage>251</spage><epage>256</epage><pages>251-256</pages><issn>0016-7932</issn><eissn>1555-645X</eissn><eissn>0016-7940</eissn><abstract>An algorithm for retrieving the
AL
index dynamics from the parameters of solar-wind plasma and the interplanetary magnetic field (IMF) has been developed. Along with other geoeffective parameters of the solar wind, an integral parameter in the form of the cumulative sum Σ[N*
V
2
] is used to determine the process of substorm formation. The algorithm is incorporated into a framework developed to retrieve the
AL
index of an Elman-type artificial neural network (ANN) containing an additional layer of neurons that provides an “internal memory” of the prehistory of the dynamical process to be retrieved. The ANN is trained on data of 70 eight-hour-long time intervals, including the periods of isolated magnetospheric substorms. The efficiency of this approach is demonstrated by numerical neural-network experiments on retrieving the dynamics of the
AL
index from the of solar wind and IMF parameters during substorms.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0016793217030021</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-7932 |
ispartof | Geomagnetism and Aeronomy, 2017-05, Vol.57 (3), p.251-256 |
issn | 0016-7932 1555-645X 0016-7940 |
language | eng |
recordid | cdi_proquest_journals_1909111661 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Artificial neural networks Dynamics Earth and Environmental Science Earth Sciences Efficiency Geophysics/Geodesy Interplanetary magnetic field Learning theory Magnetic fields Magnetospheres Magnetospheric substorms Neural networks Neurons Solar activity Solar flares Solar wind Storms |
title | Effect of solar dynamics parameters on the formation of substorm activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A57%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20solar%20dynamics%20parameters%20on%20the%20formation%20of%20substorm%20activity&rft.jtitle=Geomagnetism%20and%20Aeronomy&rft.au=Barkhatov,%20N.%20A.&rft.date=2017-05-01&rft.volume=57&rft.issue=3&rft.spage=251&rft.epage=256&rft.pages=251-256&rft.issn=0016-7932&rft.eissn=1555-645X&rft_id=info:doi/10.1134/S0016793217030021&rft_dat=%3Cproquest_cross%3E1909111661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1909111661&rft_id=info:pmid/&rfr_iscdi=true |