Effect of solar dynamics parameters on the formation of substorm activity

An algorithm for retrieving the AL index dynamics from the parameters of solar-wind plasma and the interplanetary magnetic field (IMF) has been developed. Along with other geoeffective parameters of the solar wind, an integral parameter in the form of the cumulative sum Σ[N* V 2 ] is used to determi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geomagnetism and Aeronomy 2017-05, Vol.57 (3), p.251-256
Hauptverfasser: Barkhatov, N. A., Vorob’ev, V. G., Revunov, S. E., Yagodkina, O. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 256
container_issue 3
container_start_page 251
container_title Geomagnetism and Aeronomy
container_volume 57
creator Barkhatov, N. A.
Vorob’ev, V. G.
Revunov, S. E.
Yagodkina, O. I.
description An algorithm for retrieving the AL index dynamics from the parameters of solar-wind plasma and the interplanetary magnetic field (IMF) has been developed. Along with other geoeffective parameters of the solar wind, an integral parameter in the form of the cumulative sum Σ[N* V 2 ] is used to determine the process of substorm formation. The algorithm is incorporated into a framework developed to retrieve the AL index of an Elman-type artificial neural network (ANN) containing an additional layer of neurons that provides an “internal memory” of the prehistory of the dynamical process to be retrieved. The ANN is trained on data of 70 eight-hour-long time intervals, including the periods of isolated magnetospheric substorms. The efficiency of this approach is demonstrated by numerical neural-network experiments on retrieving the dynamics of the AL index from the of solar wind and IMF parameters during substorms.
doi_str_mv 10.1134/S0016793217030021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1909111661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1909111661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-553c63870d4f23d205d9ac5616c2bc41530af7fc71b94b53189fa6c290d7fce93</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMoWFd_gLeA5-pM06Sboyyru7DgQQVvJU0T7bJtapIV9t-bsh4E8TTMvO-9gUfINcItIivvngFQVJIVWAEDKPCEZMg5z0XJ305JNsn5pJ-TixC2kCDOMSPrpbVGR-osDW6nPG0Pg-o7HeiovOpNND5QN9D4Yah1vlexS9tE75sQ04EqHbuvLh4uyZlVu2CufuaMvD4sXxarfPP0uF7cb3LNUMScc6YFm1fQlrZgbQG8lUpzgUIXjS6RM1C2srrCRpYNZziXViVNQpuuRrIZuTnmjt597k2I9dbt_ZBe1ihBIqIQmCg8Utq7ELyx9ei7XvlDjVBPjdV_Gkue4ugJiR3ejf-V_K_pGy_XbII</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1909111661</pqid></control><display><type>article</type><title>Effect of solar dynamics parameters on the formation of substorm activity</title><source>Springer Nature - Complete Springer Journals</source><creator>Barkhatov, N. A. ; Vorob’ev, V. G. ; Revunov, S. E. ; Yagodkina, O. I.</creator><creatorcontrib>Barkhatov, N. A. ; Vorob’ev, V. G. ; Revunov, S. E. ; Yagodkina, O. I.</creatorcontrib><description>An algorithm for retrieving the AL index dynamics from the parameters of solar-wind plasma and the interplanetary magnetic field (IMF) has been developed. Along with other geoeffective parameters of the solar wind, an integral parameter in the form of the cumulative sum Σ[N* V 2 ] is used to determine the process of substorm formation. The algorithm is incorporated into a framework developed to retrieve the AL index of an Elman-type artificial neural network (ANN) containing an additional layer of neurons that provides an “internal memory” of the prehistory of the dynamical process to be retrieved. The ANN is trained on data of 70 eight-hour-long time intervals, including the periods of isolated magnetospheric substorms. The efficiency of this approach is demonstrated by numerical neural-network experiments on retrieving the dynamics of the AL index from the of solar wind and IMF parameters during substorms.</description><identifier>ISSN: 0016-7932</identifier><identifier>EISSN: 1555-645X</identifier><identifier>EISSN: 0016-7940</identifier><identifier>DOI: 10.1134/S0016793217030021</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Artificial neural networks ; Dynamics ; Earth and Environmental Science ; Earth Sciences ; Efficiency ; Geophysics/Geodesy ; Interplanetary magnetic field ; Learning theory ; Magnetic fields ; Magnetospheres ; Magnetospheric substorms ; Neural networks ; Neurons ; Solar activity ; Solar flares ; Solar wind ; Storms</subject><ispartof>Geomagnetism and Aeronomy, 2017-05, Vol.57 (3), p.251-256</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Geomagnetism and Aeronomy is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-553c63870d4f23d205d9ac5616c2bc41530af7fc71b94b53189fa6c290d7fce93</citedby><cites>FETCH-LOGICAL-c316t-553c63870d4f23d205d9ac5616c2bc41530af7fc71b94b53189fa6c290d7fce93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0016793217030021$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0016793217030021$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Barkhatov, N. A.</creatorcontrib><creatorcontrib>Vorob’ev, V. G.</creatorcontrib><creatorcontrib>Revunov, S. E.</creatorcontrib><creatorcontrib>Yagodkina, O. I.</creatorcontrib><title>Effect of solar dynamics parameters on the formation of substorm activity</title><title>Geomagnetism and Aeronomy</title><addtitle>Geomagn. Aeron</addtitle><description>An algorithm for retrieving the AL index dynamics from the parameters of solar-wind plasma and the interplanetary magnetic field (IMF) has been developed. Along with other geoeffective parameters of the solar wind, an integral parameter in the form of the cumulative sum Σ[N* V 2 ] is used to determine the process of substorm formation. The algorithm is incorporated into a framework developed to retrieve the AL index of an Elman-type artificial neural network (ANN) containing an additional layer of neurons that provides an “internal memory” of the prehistory of the dynamical process to be retrieved. The ANN is trained on data of 70 eight-hour-long time intervals, including the periods of isolated magnetospheric substorms. The efficiency of this approach is demonstrated by numerical neural-network experiments on retrieving the dynamics of the AL index from the of solar wind and IMF parameters during substorms.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Dynamics</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Efficiency</subject><subject>Geophysics/Geodesy</subject><subject>Interplanetary magnetic field</subject><subject>Learning theory</subject><subject>Magnetic fields</subject><subject>Magnetospheres</subject><subject>Magnetospheric substorms</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Solar activity</subject><subject>Solar flares</subject><subject>Solar wind</subject><subject>Storms</subject><issn>0016-7932</issn><issn>1555-645X</issn><issn>0016-7940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEFLxDAQhYMoWFd_gLeA5-pM06Sboyyru7DgQQVvJU0T7bJtapIV9t-bsh4E8TTMvO-9gUfINcItIivvngFQVJIVWAEDKPCEZMg5z0XJ305JNsn5pJ-TixC2kCDOMSPrpbVGR-osDW6nPG0Pg-o7HeiovOpNND5QN9D4Yah1vlexS9tE75sQ04EqHbuvLh4uyZlVu2CufuaMvD4sXxarfPP0uF7cb3LNUMScc6YFm1fQlrZgbQG8lUpzgUIXjS6RM1C2srrCRpYNZziXViVNQpuuRrIZuTnmjt597k2I9dbt_ZBe1ihBIqIQmCg8Utq7ELyx9ei7XvlDjVBPjdV_Gkue4ugJiR3ejf-V_K_pGy_XbII</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Barkhatov, N. A.</creator><creator>Vorob’ev, V. G.</creator><creator>Revunov, S. E.</creator><creator>Yagodkina, O. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20170501</creationdate><title>Effect of solar dynamics parameters on the formation of substorm activity</title><author>Barkhatov, N. A. ; Vorob’ev, V. G. ; Revunov, S. E. ; Yagodkina, O. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-553c63870d4f23d205d9ac5616c2bc41530af7fc71b94b53189fa6c290d7fce93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Dynamics</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Efficiency</topic><topic>Geophysics/Geodesy</topic><topic>Interplanetary magnetic field</topic><topic>Learning theory</topic><topic>Magnetic fields</topic><topic>Magnetospheres</topic><topic>Magnetospheric substorms</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Solar activity</topic><topic>Solar flares</topic><topic>Solar wind</topic><topic>Storms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barkhatov, N. A.</creatorcontrib><creatorcontrib>Vorob’ev, V. G.</creatorcontrib><creatorcontrib>Revunov, S. E.</creatorcontrib><creatorcontrib>Yagodkina, O. I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Geomagnetism and Aeronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barkhatov, N. A.</au><au>Vorob’ev, V. G.</au><au>Revunov, S. E.</au><au>Yagodkina, O. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of solar dynamics parameters on the formation of substorm activity</atitle><jtitle>Geomagnetism and Aeronomy</jtitle><stitle>Geomagn. Aeron</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>57</volume><issue>3</issue><spage>251</spage><epage>256</epage><pages>251-256</pages><issn>0016-7932</issn><eissn>1555-645X</eissn><eissn>0016-7940</eissn><abstract>An algorithm for retrieving the AL index dynamics from the parameters of solar-wind plasma and the interplanetary magnetic field (IMF) has been developed. Along with other geoeffective parameters of the solar wind, an integral parameter in the form of the cumulative sum Σ[N* V 2 ] is used to determine the process of substorm formation. The algorithm is incorporated into a framework developed to retrieve the AL index of an Elman-type artificial neural network (ANN) containing an additional layer of neurons that provides an “internal memory” of the prehistory of the dynamical process to be retrieved. The ANN is trained on data of 70 eight-hour-long time intervals, including the periods of isolated magnetospheric substorms. The efficiency of this approach is demonstrated by numerical neural-network experiments on retrieving the dynamics of the AL index from the of solar wind and IMF parameters during substorms.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0016793217030021</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-7932
ispartof Geomagnetism and Aeronomy, 2017-05, Vol.57 (3), p.251-256
issn 0016-7932
1555-645X
0016-7940
language eng
recordid cdi_proquest_journals_1909111661
source Springer Nature - Complete Springer Journals
subjects Algorithms
Artificial neural networks
Dynamics
Earth and Environmental Science
Earth Sciences
Efficiency
Geophysics/Geodesy
Interplanetary magnetic field
Learning theory
Magnetic fields
Magnetospheres
Magnetospheric substorms
Neural networks
Neurons
Solar activity
Solar flares
Solar wind
Storms
title Effect of solar dynamics parameters on the formation of substorm activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A57%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20solar%20dynamics%20parameters%20on%20the%20formation%20of%20substorm%20activity&rft.jtitle=Geomagnetism%20and%20Aeronomy&rft.au=Barkhatov,%20N.%20A.&rft.date=2017-05-01&rft.volume=57&rft.issue=3&rft.spage=251&rft.epage=256&rft.pages=251-256&rft.issn=0016-7932&rft.eissn=1555-645X&rft_id=info:doi/10.1134/S0016793217030021&rft_dat=%3Cproquest_cross%3E1909111661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1909111661&rft_id=info:pmid/&rfr_iscdi=true