Transcriptome‐based prediction of hybrid performance with unbalanced data from a maize breeding programme

mRNA transcription profiles are an alternative to DNA markers for predicting hybrid performance. Our objective was to investigate their prediction accuracy in an unbalanced maize data set. We focused on the effectiveness of preselecting a core set of genes for transcription profiling and on the comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant breeding 2017-06, Vol.136 (3), p.331-337
Hauptverfasser: Zenke‐Philippi, Carola, Frisch, Matthias, Thiemann, Alexander, Seifert, Felix, Schrag, Tobias, Melchinger, Albrecht E., Scholten, Stefan, Herzog, Eva, Link, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 337
container_issue 3
container_start_page 331
container_title Plant breeding
container_volume 136
creator Zenke‐Philippi, Carola
Frisch, Matthias
Thiemann, Alexander
Seifert, Felix
Schrag, Tobias
Melchinger, Albrecht E.
Scholten, Stefan
Herzog, Eva
Link, W.
description mRNA transcription profiles are an alternative to DNA markers for predicting hybrid performance. Our objective was to investigate their prediction accuracy in an unbalanced maize data set. We focused on the effectiveness of preselecting a core set of genes for transcription profiling and on the comparison of prediction models. A total of 254 hybrids were evaluated for grain yield and grain dry matter content. The mRNA transcripts of a core set of 2k genes and the genotype of 1k AFLP markers were assessed in the parental lines. Predictions based on transcriptome‐based distances determined from the 2k core set of genes resulted in prediction accuracies below 0.5 and could not reach the high accuracies observed with a 46k micro‐array in earlier studies. Predictions based on ridge regression resulted in prediction accuracies greater 0.6. Only marginal differences were observed in the prediction accuracies of mRNA transcripts compared with AFLPs. We conclude that mRNA transcription profiles are suitable for hybrid prediction with ridge‐regression models in unbalanced designs, even if limited resources allow only transcription profiling of a core set of genes.
doi_str_mv 10.1111/pbr.12482
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1909025359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1909025359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2972-306542bedc69bae211df725adc9275802147775b9639cd21fa667fd90a8ea143</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsL3yDgysW0SWYyaZZa_IOCIt2H_LapncmYTCl15SP4jD6JqXXr3Vzu5bvncA8AlxiNcK5xp-IIk2pCjsAAVyUvECXlMRggzHjBaYVPwVlKK7SfSzYAb_Mo26Sj7_rQ2O_PLyWTNbCL1njd-9DC4OByp6LPSxtdiI1stYVb3y_hplVyvR8NNLKX0MXQQAkb6T8sVNFmjXaRtcIiyqax5-DEyXWyF399COb3d_PpYzF7fnia3swKTTgjRYlqWhFlja65kpZgbBwjVBrNCaMTRHDFGKOK1yXXhmAn65o5w5GcWJl_HoKrg2w2ft_Y1ItV2MQ2OwrMEUeElpRn6vpA6RhSitaJLvpGxp3ASOyjFDlK8RtlZscHduvXdvc_KF5uXw8XP-SEd4U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1909025359</pqid></control><display><type>article</type><title>Transcriptome‐based prediction of hybrid performance with unbalanced data from a maize breeding programme</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Zenke‐Philippi, Carola ; Frisch, Matthias ; Thiemann, Alexander ; Seifert, Felix ; Schrag, Tobias ; Melchinger, Albrecht E. ; Scholten, Stefan ; Herzog, Eva ; Link, W.</creator><creatorcontrib>Zenke‐Philippi, Carola ; Frisch, Matthias ; Thiemann, Alexander ; Seifert, Felix ; Schrag, Tobias ; Melchinger, Albrecht E. ; Scholten, Stefan ; Herzog, Eva ; Link, W.</creatorcontrib><description>mRNA transcription profiles are an alternative to DNA markers for predicting hybrid performance. Our objective was to investigate their prediction accuracy in an unbalanced maize data set. We focused on the effectiveness of preselecting a core set of genes for transcription profiling and on the comparison of prediction models. A total of 254 hybrids were evaluated for grain yield and grain dry matter content. The mRNA transcripts of a core set of 2k genes and the genotype of 1k AFLP markers were assessed in the parental lines. Predictions based on transcriptome‐based distances determined from the 2k core set of genes resulted in prediction accuracies below 0.5 and could not reach the high accuracies observed with a 46k micro‐array in earlier studies. Predictions based on ridge regression resulted in prediction accuracies greater 0.6. Only marginal differences were observed in the prediction accuracies of mRNA transcripts compared with AFLPs. We conclude that mRNA transcription profiles are suitable for hybrid prediction with ridge‐regression models in unbalanced designs, even if limited resources allow only transcription profiling of a core set of genes.</description><identifier>ISSN: 0179-9541</identifier><identifier>EISSN: 1439-0523</identifier><identifier>DOI: 10.1111/pbr.12482</identifier><language>eng</language><publisher>Berlin: Wiley Subscription Services, Inc</publisher><subject>Amplified fragment length polymorphism ; Breeding ; Corn ; Deoxyribonucleic acid ; DNA ; Dry matter ; Drying ; Gene expression ; Genes ; genomic prediction ; Grain ; hybrid prediction ; Hybrids ; Markers ; Mathematical models ; mRNA transcription profiles ; Performance prediction ; Plant breeding ; Prediction models ; Regression ; Regression analysis ; ridge regression ; Transcription ; transcriptome‐based distances ; Yield</subject><ispartof>Plant breeding, 2017-06, Vol.136 (3), p.331-337</ispartof><rights>2017 Blackwell Verlag GmbH</rights><rights>Copyright © 2017 Blackwell Verlag GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2972-306542bedc69bae211df725adc9275802147775b9639cd21fa667fd90a8ea143</citedby><cites>FETCH-LOGICAL-c2972-306542bedc69bae211df725adc9275802147775b9639cd21fa667fd90a8ea143</cites><orcidid>0000-0003-4234-8972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbr.12482$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbr.12482$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zenke‐Philippi, Carola</creatorcontrib><creatorcontrib>Frisch, Matthias</creatorcontrib><creatorcontrib>Thiemann, Alexander</creatorcontrib><creatorcontrib>Seifert, Felix</creatorcontrib><creatorcontrib>Schrag, Tobias</creatorcontrib><creatorcontrib>Melchinger, Albrecht E.</creatorcontrib><creatorcontrib>Scholten, Stefan</creatorcontrib><creatorcontrib>Herzog, Eva</creatorcontrib><creatorcontrib>Link, W.</creatorcontrib><title>Transcriptome‐based prediction of hybrid performance with unbalanced data from a maize breeding programme</title><title>Plant breeding</title><description>mRNA transcription profiles are an alternative to DNA markers for predicting hybrid performance. Our objective was to investigate their prediction accuracy in an unbalanced maize data set. We focused on the effectiveness of preselecting a core set of genes for transcription profiling and on the comparison of prediction models. A total of 254 hybrids were evaluated for grain yield and grain dry matter content. The mRNA transcripts of a core set of 2k genes and the genotype of 1k AFLP markers were assessed in the parental lines. Predictions based on transcriptome‐based distances determined from the 2k core set of genes resulted in prediction accuracies below 0.5 and could not reach the high accuracies observed with a 46k micro‐array in earlier studies. Predictions based on ridge regression resulted in prediction accuracies greater 0.6. Only marginal differences were observed in the prediction accuracies of mRNA transcripts compared with AFLPs. We conclude that mRNA transcription profiles are suitable for hybrid prediction with ridge‐regression models in unbalanced designs, even if limited resources allow only transcription profiling of a core set of genes.</description><subject>Amplified fragment length polymorphism</subject><subject>Breeding</subject><subject>Corn</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Dry matter</subject><subject>Drying</subject><subject>Gene expression</subject><subject>Genes</subject><subject>genomic prediction</subject><subject>Grain</subject><subject>hybrid prediction</subject><subject>Hybrids</subject><subject>Markers</subject><subject>Mathematical models</subject><subject>mRNA transcription profiles</subject><subject>Performance prediction</subject><subject>Plant breeding</subject><subject>Prediction models</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>ridge regression</subject><subject>Transcription</subject><subject>transcriptome‐based distances</subject><subject>Yield</subject><issn>0179-9541</issn><issn>1439-0523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKsL3yDgysW0SWYyaZZa_IOCIt2H_LapncmYTCl15SP4jD6JqXXr3Vzu5bvncA8AlxiNcK5xp-IIk2pCjsAAVyUvECXlMRggzHjBaYVPwVlKK7SfSzYAb_Mo26Sj7_rQ2O_PLyWTNbCL1njd-9DC4OByp6LPSxtdiI1stYVb3y_hplVyvR8NNLKX0MXQQAkb6T8sVNFmjXaRtcIiyqax5-DEyXWyF399COb3d_PpYzF7fnia3swKTTgjRYlqWhFlja65kpZgbBwjVBrNCaMTRHDFGKOK1yXXhmAn65o5w5GcWJl_HoKrg2w2ft_Y1ItV2MQ2OwrMEUeElpRn6vpA6RhSitaJLvpGxp3ASOyjFDlK8RtlZscHduvXdvc_KF5uXw8XP-SEd4U</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Zenke‐Philippi, Carola</creator><creator>Frisch, Matthias</creator><creator>Thiemann, Alexander</creator><creator>Seifert, Felix</creator><creator>Schrag, Tobias</creator><creator>Melchinger, Albrecht E.</creator><creator>Scholten, Stefan</creator><creator>Herzog, Eva</creator><creator>Link, W.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-4234-8972</orcidid></search><sort><creationdate>201706</creationdate><title>Transcriptome‐based prediction of hybrid performance with unbalanced data from a maize breeding programme</title><author>Zenke‐Philippi, Carola ; Frisch, Matthias ; Thiemann, Alexander ; Seifert, Felix ; Schrag, Tobias ; Melchinger, Albrecht E. ; Scholten, Stefan ; Herzog, Eva ; Link, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2972-306542bedc69bae211df725adc9275802147775b9639cd21fa667fd90a8ea143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amplified fragment length polymorphism</topic><topic>Breeding</topic><topic>Corn</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Dry matter</topic><topic>Drying</topic><topic>Gene expression</topic><topic>Genes</topic><topic>genomic prediction</topic><topic>Grain</topic><topic>hybrid prediction</topic><topic>Hybrids</topic><topic>Markers</topic><topic>Mathematical models</topic><topic>mRNA transcription profiles</topic><topic>Performance prediction</topic><topic>Plant breeding</topic><topic>Prediction models</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>ridge regression</topic><topic>Transcription</topic><topic>transcriptome‐based distances</topic><topic>Yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zenke‐Philippi, Carola</creatorcontrib><creatorcontrib>Frisch, Matthias</creatorcontrib><creatorcontrib>Thiemann, Alexander</creatorcontrib><creatorcontrib>Seifert, Felix</creatorcontrib><creatorcontrib>Schrag, Tobias</creatorcontrib><creatorcontrib>Melchinger, Albrecht E.</creatorcontrib><creatorcontrib>Scholten, Stefan</creatorcontrib><creatorcontrib>Herzog, Eva</creatorcontrib><creatorcontrib>Link, W.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Plant breeding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zenke‐Philippi, Carola</au><au>Frisch, Matthias</au><au>Thiemann, Alexander</au><au>Seifert, Felix</au><au>Schrag, Tobias</au><au>Melchinger, Albrecht E.</au><au>Scholten, Stefan</au><au>Herzog, Eva</au><au>Link, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptome‐based prediction of hybrid performance with unbalanced data from a maize breeding programme</atitle><jtitle>Plant breeding</jtitle><date>2017-06</date><risdate>2017</risdate><volume>136</volume><issue>3</issue><spage>331</spage><epage>337</epage><pages>331-337</pages><issn>0179-9541</issn><eissn>1439-0523</eissn><abstract>mRNA transcription profiles are an alternative to DNA markers for predicting hybrid performance. Our objective was to investigate their prediction accuracy in an unbalanced maize data set. We focused on the effectiveness of preselecting a core set of genes for transcription profiling and on the comparison of prediction models. A total of 254 hybrids were evaluated for grain yield and grain dry matter content. The mRNA transcripts of a core set of 2k genes and the genotype of 1k AFLP markers were assessed in the parental lines. Predictions based on transcriptome‐based distances determined from the 2k core set of genes resulted in prediction accuracies below 0.5 and could not reach the high accuracies observed with a 46k micro‐array in earlier studies. Predictions based on ridge regression resulted in prediction accuracies greater 0.6. Only marginal differences were observed in the prediction accuracies of mRNA transcripts compared with AFLPs. We conclude that mRNA transcription profiles are suitable for hybrid prediction with ridge‐regression models in unbalanced designs, even if limited resources allow only transcription profiling of a core set of genes.</abstract><cop>Berlin</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/pbr.12482</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4234-8972</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0179-9541
ispartof Plant breeding, 2017-06, Vol.136 (3), p.331-337
issn 0179-9541
1439-0523
language eng
recordid cdi_proquest_journals_1909025359
source Wiley Online Library - AutoHoldings Journals
subjects Amplified fragment length polymorphism
Breeding
Corn
Deoxyribonucleic acid
DNA
Dry matter
Drying
Gene expression
Genes
genomic prediction
Grain
hybrid prediction
Hybrids
Markers
Mathematical models
mRNA transcription profiles
Performance prediction
Plant breeding
Prediction models
Regression
Regression analysis
ridge regression
Transcription
transcriptome‐based distances
Yield
title Transcriptome‐based prediction of hybrid performance with unbalanced data from a maize breeding programme
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A31%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptome%E2%80%90based%20prediction%20of%20hybrid%20performance%20with%20unbalanced%20data%20from%20a%20maize%20breeding%20programme&rft.jtitle=Plant%20breeding&rft.au=Zenke%E2%80%90Philippi,%20Carola&rft.date=2017-06&rft.volume=136&rft.issue=3&rft.spage=331&rft.epage=337&rft.pages=331-337&rft.issn=0179-9541&rft.eissn=1439-0523&rft_id=info:doi/10.1111/pbr.12482&rft_dat=%3Cproquest_cross%3E1909025359%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1909025359&rft_id=info:pmid/&rfr_iscdi=true