Transcriptome‐based prediction of hybrid performance with unbalanced data from a maize breeding programme
mRNA transcription profiles are an alternative to DNA markers for predicting hybrid performance. Our objective was to investigate their prediction accuracy in an unbalanced maize data set. We focused on the effectiveness of preselecting a core set of genes for transcription profiling and on the comp...
Gespeichert in:
Veröffentlicht in: | Plant breeding 2017-06, Vol.136 (3), p.331-337 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 337 |
---|---|
container_issue | 3 |
container_start_page | 331 |
container_title | Plant breeding |
container_volume | 136 |
creator | Zenke‐Philippi, Carola Frisch, Matthias Thiemann, Alexander Seifert, Felix Schrag, Tobias Melchinger, Albrecht E. Scholten, Stefan Herzog, Eva Link, W. |
description | mRNA transcription profiles are an alternative to DNA markers for predicting hybrid performance. Our objective was to investigate their prediction accuracy in an unbalanced maize data set. We focused on the effectiveness of preselecting a core set of genes for transcription profiling and on the comparison of prediction models. A total of 254 hybrids were evaluated for grain yield and grain dry matter content. The mRNA transcripts of a core set of 2k genes and the genotype of 1k AFLP markers were assessed in the parental lines. Predictions based on transcriptome‐based distances determined from the 2k core set of genes resulted in prediction accuracies below 0.5 and could not reach the high accuracies observed with a 46k micro‐array in earlier studies. Predictions based on ridge regression resulted in prediction accuracies greater 0.6. Only marginal differences were observed in the prediction accuracies of mRNA transcripts compared with AFLPs. We conclude that mRNA transcription profiles are suitable for hybrid prediction with ridge‐regression models in unbalanced designs, even if limited resources allow only transcription profiling of a core set of genes. |
doi_str_mv | 10.1111/pbr.12482 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1909025359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1909025359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2972-306542bedc69bae211df725adc9275802147775b9639cd21fa667fd90a8ea143</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsL3yDgysW0SWYyaZZa_IOCIt2H_LapncmYTCl15SP4jD6JqXXr3Vzu5bvncA8AlxiNcK5xp-IIk2pCjsAAVyUvECXlMRggzHjBaYVPwVlKK7SfSzYAb_Mo26Sj7_rQ2O_PLyWTNbCL1njd-9DC4OByp6LPSxtdiI1stYVb3y_hplVyvR8NNLKX0MXQQAkb6T8sVNFmjXaRtcIiyqax5-DEyXWyF399COb3d_PpYzF7fnia3swKTTgjRYlqWhFlja65kpZgbBwjVBrNCaMTRHDFGKOK1yXXhmAn65o5w5GcWJl_HoKrg2w2ft_Y1ItV2MQ2OwrMEUeElpRn6vpA6RhSitaJLvpGxp3ASOyjFDlK8RtlZscHduvXdvc_KF5uXw8XP-SEd4U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1909025359</pqid></control><display><type>article</type><title>Transcriptome‐based prediction of hybrid performance with unbalanced data from a maize breeding programme</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Zenke‐Philippi, Carola ; Frisch, Matthias ; Thiemann, Alexander ; Seifert, Felix ; Schrag, Tobias ; Melchinger, Albrecht E. ; Scholten, Stefan ; Herzog, Eva ; Link, W.</creator><creatorcontrib>Zenke‐Philippi, Carola ; Frisch, Matthias ; Thiemann, Alexander ; Seifert, Felix ; Schrag, Tobias ; Melchinger, Albrecht E. ; Scholten, Stefan ; Herzog, Eva ; Link, W.</creatorcontrib><description>mRNA transcription profiles are an alternative to DNA markers for predicting hybrid performance. Our objective was to investigate their prediction accuracy in an unbalanced maize data set. We focused on the effectiveness of preselecting a core set of genes for transcription profiling and on the comparison of prediction models. A total of 254 hybrids were evaluated for grain yield and grain dry matter content. The mRNA transcripts of a core set of 2k genes and the genotype of 1k AFLP markers were assessed in the parental lines. Predictions based on transcriptome‐based distances determined from the 2k core set of genes resulted in prediction accuracies below 0.5 and could not reach the high accuracies observed with a 46k micro‐array in earlier studies. Predictions based on ridge regression resulted in prediction accuracies greater 0.6. Only marginal differences were observed in the prediction accuracies of mRNA transcripts compared with AFLPs. We conclude that mRNA transcription profiles are suitable for hybrid prediction with ridge‐regression models in unbalanced designs, even if limited resources allow only transcription profiling of a core set of genes.</description><identifier>ISSN: 0179-9541</identifier><identifier>EISSN: 1439-0523</identifier><identifier>DOI: 10.1111/pbr.12482</identifier><language>eng</language><publisher>Berlin: Wiley Subscription Services, Inc</publisher><subject>Amplified fragment length polymorphism ; Breeding ; Corn ; Deoxyribonucleic acid ; DNA ; Dry matter ; Drying ; Gene expression ; Genes ; genomic prediction ; Grain ; hybrid prediction ; Hybrids ; Markers ; Mathematical models ; mRNA transcription profiles ; Performance prediction ; Plant breeding ; Prediction models ; Regression ; Regression analysis ; ridge regression ; Transcription ; transcriptome‐based distances ; Yield</subject><ispartof>Plant breeding, 2017-06, Vol.136 (3), p.331-337</ispartof><rights>2017 Blackwell Verlag GmbH</rights><rights>Copyright © 2017 Blackwell Verlag GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2972-306542bedc69bae211df725adc9275802147775b9639cd21fa667fd90a8ea143</citedby><cites>FETCH-LOGICAL-c2972-306542bedc69bae211df725adc9275802147775b9639cd21fa667fd90a8ea143</cites><orcidid>0000-0003-4234-8972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbr.12482$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbr.12482$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zenke‐Philippi, Carola</creatorcontrib><creatorcontrib>Frisch, Matthias</creatorcontrib><creatorcontrib>Thiemann, Alexander</creatorcontrib><creatorcontrib>Seifert, Felix</creatorcontrib><creatorcontrib>Schrag, Tobias</creatorcontrib><creatorcontrib>Melchinger, Albrecht E.</creatorcontrib><creatorcontrib>Scholten, Stefan</creatorcontrib><creatorcontrib>Herzog, Eva</creatorcontrib><creatorcontrib>Link, W.</creatorcontrib><title>Transcriptome‐based prediction of hybrid performance with unbalanced data from a maize breeding programme</title><title>Plant breeding</title><description>mRNA transcription profiles are an alternative to DNA markers for predicting hybrid performance. Our objective was to investigate their prediction accuracy in an unbalanced maize data set. We focused on the effectiveness of preselecting a core set of genes for transcription profiling and on the comparison of prediction models. A total of 254 hybrids were evaluated for grain yield and grain dry matter content. The mRNA transcripts of a core set of 2k genes and the genotype of 1k AFLP markers were assessed in the parental lines. Predictions based on transcriptome‐based distances determined from the 2k core set of genes resulted in prediction accuracies below 0.5 and could not reach the high accuracies observed with a 46k micro‐array in earlier studies. Predictions based on ridge regression resulted in prediction accuracies greater 0.6. Only marginal differences were observed in the prediction accuracies of mRNA transcripts compared with AFLPs. We conclude that mRNA transcription profiles are suitable for hybrid prediction with ridge‐regression models in unbalanced designs, even if limited resources allow only transcription profiling of a core set of genes.</description><subject>Amplified fragment length polymorphism</subject><subject>Breeding</subject><subject>Corn</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Dry matter</subject><subject>Drying</subject><subject>Gene expression</subject><subject>Genes</subject><subject>genomic prediction</subject><subject>Grain</subject><subject>hybrid prediction</subject><subject>Hybrids</subject><subject>Markers</subject><subject>Mathematical models</subject><subject>mRNA transcription profiles</subject><subject>Performance prediction</subject><subject>Plant breeding</subject><subject>Prediction models</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>ridge regression</subject><subject>Transcription</subject><subject>transcriptome‐based distances</subject><subject>Yield</subject><issn>0179-9541</issn><issn>1439-0523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKsL3yDgysW0SWYyaZZa_IOCIt2H_LapncmYTCl15SP4jD6JqXXr3Vzu5bvncA8AlxiNcK5xp-IIk2pCjsAAVyUvECXlMRggzHjBaYVPwVlKK7SfSzYAb_Mo26Sj7_rQ2O_PLyWTNbCL1njd-9DC4OByp6LPSxtdiI1stYVb3y_hplVyvR8NNLKX0MXQQAkb6T8sVNFmjXaRtcIiyqax5-DEyXWyF399COb3d_PpYzF7fnia3swKTTgjRYlqWhFlja65kpZgbBwjVBrNCaMTRHDFGKOK1yXXhmAn65o5w5GcWJl_HoKrg2w2ft_Y1ItV2MQ2OwrMEUeElpRn6vpA6RhSitaJLvpGxp3ASOyjFDlK8RtlZscHduvXdvc_KF5uXw8XP-SEd4U</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Zenke‐Philippi, Carola</creator><creator>Frisch, Matthias</creator><creator>Thiemann, Alexander</creator><creator>Seifert, Felix</creator><creator>Schrag, Tobias</creator><creator>Melchinger, Albrecht E.</creator><creator>Scholten, Stefan</creator><creator>Herzog, Eva</creator><creator>Link, W.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-4234-8972</orcidid></search><sort><creationdate>201706</creationdate><title>Transcriptome‐based prediction of hybrid performance with unbalanced data from a maize breeding programme</title><author>Zenke‐Philippi, Carola ; Frisch, Matthias ; Thiemann, Alexander ; Seifert, Felix ; Schrag, Tobias ; Melchinger, Albrecht E. ; Scholten, Stefan ; Herzog, Eva ; Link, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2972-306542bedc69bae211df725adc9275802147775b9639cd21fa667fd90a8ea143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amplified fragment length polymorphism</topic><topic>Breeding</topic><topic>Corn</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Dry matter</topic><topic>Drying</topic><topic>Gene expression</topic><topic>Genes</topic><topic>genomic prediction</topic><topic>Grain</topic><topic>hybrid prediction</topic><topic>Hybrids</topic><topic>Markers</topic><topic>Mathematical models</topic><topic>mRNA transcription profiles</topic><topic>Performance prediction</topic><topic>Plant breeding</topic><topic>Prediction models</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>ridge regression</topic><topic>Transcription</topic><topic>transcriptome‐based distances</topic><topic>Yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zenke‐Philippi, Carola</creatorcontrib><creatorcontrib>Frisch, Matthias</creatorcontrib><creatorcontrib>Thiemann, Alexander</creatorcontrib><creatorcontrib>Seifert, Felix</creatorcontrib><creatorcontrib>Schrag, Tobias</creatorcontrib><creatorcontrib>Melchinger, Albrecht E.</creatorcontrib><creatorcontrib>Scholten, Stefan</creatorcontrib><creatorcontrib>Herzog, Eva</creatorcontrib><creatorcontrib>Link, W.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Plant breeding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zenke‐Philippi, Carola</au><au>Frisch, Matthias</au><au>Thiemann, Alexander</au><au>Seifert, Felix</au><au>Schrag, Tobias</au><au>Melchinger, Albrecht E.</au><au>Scholten, Stefan</au><au>Herzog, Eva</au><au>Link, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptome‐based prediction of hybrid performance with unbalanced data from a maize breeding programme</atitle><jtitle>Plant breeding</jtitle><date>2017-06</date><risdate>2017</risdate><volume>136</volume><issue>3</issue><spage>331</spage><epage>337</epage><pages>331-337</pages><issn>0179-9541</issn><eissn>1439-0523</eissn><abstract>mRNA transcription profiles are an alternative to DNA markers for predicting hybrid performance. Our objective was to investigate their prediction accuracy in an unbalanced maize data set. We focused on the effectiveness of preselecting a core set of genes for transcription profiling and on the comparison of prediction models. A total of 254 hybrids were evaluated for grain yield and grain dry matter content. The mRNA transcripts of a core set of 2k genes and the genotype of 1k AFLP markers were assessed in the parental lines. Predictions based on transcriptome‐based distances determined from the 2k core set of genes resulted in prediction accuracies below 0.5 and could not reach the high accuracies observed with a 46k micro‐array in earlier studies. Predictions based on ridge regression resulted in prediction accuracies greater 0.6. Only marginal differences were observed in the prediction accuracies of mRNA transcripts compared with AFLPs. We conclude that mRNA transcription profiles are suitable for hybrid prediction with ridge‐regression models in unbalanced designs, even if limited resources allow only transcription profiling of a core set of genes.</abstract><cop>Berlin</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/pbr.12482</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4234-8972</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0179-9541 |
ispartof | Plant breeding, 2017-06, Vol.136 (3), p.331-337 |
issn | 0179-9541 1439-0523 |
language | eng |
recordid | cdi_proquest_journals_1909025359 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Amplified fragment length polymorphism Breeding Corn Deoxyribonucleic acid DNA Dry matter Drying Gene expression Genes genomic prediction Grain hybrid prediction Hybrids Markers Mathematical models mRNA transcription profiles Performance prediction Plant breeding Prediction models Regression Regression analysis ridge regression Transcription transcriptome‐based distances Yield |
title | Transcriptome‐based prediction of hybrid performance with unbalanced data from a maize breeding programme |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A31%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptome%E2%80%90based%20prediction%20of%20hybrid%20performance%20with%20unbalanced%20data%20from%20a%20maize%20breeding%20programme&rft.jtitle=Plant%20breeding&rft.au=Zenke%E2%80%90Philippi,%20Carola&rft.date=2017-06&rft.volume=136&rft.issue=3&rft.spage=331&rft.epage=337&rft.pages=331-337&rft.issn=0179-9541&rft.eissn=1439-0523&rft_id=info:doi/10.1111/pbr.12482&rft_dat=%3Cproquest_cross%3E1909025359%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1909025359&rft_id=info:pmid/&rfr_iscdi=true |