The electrodynamic effects of MOSC‐like plasma clouds

The effects on the plasma/electrodynamic environment in the low‐latitude ionosphere produced by the artificial plasma clouds created in the Metal Oxide Space Cloud (MOSC) experiment are studied via simulations. The electric fields and plasma flow in the vicinity of the cloud are calculated using its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radio science 2017-05, Vol.52 (5), p.604-615
Hauptverfasser: Retterer, John, Groves, Keith M., Pedersen, Todd R., Caton, Ronald G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 615
container_issue 5
container_start_page 604
container_title Radio science
container_volume 52
creator Retterer, John
Groves, Keith M.
Pedersen, Todd R.
Caton, Ronald G.
description The effects on the plasma/electrodynamic environment in the low‐latitude ionosphere produced by the artificial plasma clouds created in the Metal Oxide Space Cloud (MOSC) experiment are studied via simulations. The electric fields and plasma flow in the vicinity of the cloud are calculated using its estimated field‐line‐integrated conductance; it is found that the “comma‐like” flow around the cloud seen in the ALTAIR (Advanced Research Project Agency [ARPA] Long‐range Tracking and Identification Radar) observations can be explained by the perturbations to the electric field produced by the conductance gradients around the cloud. Next, the conductance is introduced into a simulation of the development of the Rayleigh‐Taylor instability. The simulations suggest that a moderately denser cloud than the MOSC cloud, closer to the bottom edge of the F layer, could indeed suppress the development of the low‐density plumes and the shorter‐wavelength irregularities associated with radio scintillation that form with the Rayleigh‐Taylor instability in the low‐latitude ionosphere. Key Points The electrodynamic effects of the MOSC plasma clouds are explored with simulations The potential for chemical releases to quench radio scintillation is examined It is found that modest enhancement of the MOSC clouds might suppress scintillation
doi_str_mv 10.1002/2016RS006085
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1908912503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1908912503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3448-8eac1b602db058d4479dba3744f9cc98544d277369901a88038038667aeb68803</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRMFZ3PkDArdE7k5v5WUq1KlQKbQV3w2QywdS0qTMNkp2P4DP6JCbUhSvhwOXAxz2cQ8g5hSsKwK4ZUD5fAHCQ2QGJqEJMhFIvhyQCQJlwDnhMTkJYAVDMOEZELF9d7Gpnd74puo1ZVzZ2Zdn7EDdl_DRbjL8_v-rqzcXb2oS1iW3dtEU4JUelqYM7-70j8jy5W44fkuns_nF8M01sin2idMbSnAMrcshkgShUkZtUIJbKWiUzxIIJkXKlgBopIR3EuTAu54MdkYv9361v3lsXdnrVtH7TR2qqQCrKMkh76nJPWd-E4F2pt75aG99pCnqYRv-dpsfZHv-oatf9y-r57YJBXyX9AZmpYt8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1908912503</pqid></control><display><type>article</type><title>The electrodynamic effects of MOSC‐like plasma clouds</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library All Journals</source><creator>Retterer, John ; Groves, Keith M. ; Pedersen, Todd R. ; Caton, Ronald G.</creator><creatorcontrib>Retterer, John ; Groves, Keith M. ; Pedersen, Todd R. ; Caton, Ronald G.</creatorcontrib><description>The effects on the plasma/electrodynamic environment in the low‐latitude ionosphere produced by the artificial plasma clouds created in the Metal Oxide Space Cloud (MOSC) experiment are studied via simulations. The electric fields and plasma flow in the vicinity of the cloud are calculated using its estimated field‐line‐integrated conductance; it is found that the “comma‐like” flow around the cloud seen in the ALTAIR (Advanced Research Project Agency [ARPA] Long‐range Tracking and Identification Radar) observations can be explained by the perturbations to the electric field produced by the conductance gradients around the cloud. Next, the conductance is introduced into a simulation of the development of the Rayleigh‐Taylor instability. The simulations suggest that a moderately denser cloud than the MOSC cloud, closer to the bottom edge of the F layer, could indeed suppress the development of the low‐density plumes and the shorter‐wavelength irregularities associated with radio scintillation that form with the Rayleigh‐Taylor instability in the low‐latitude ionosphere. Key Points The electrodynamic effects of the MOSC plasma clouds are explored with simulations The potential for chemical releases to quench radio scintillation is examined It is found that modest enhancement of the MOSC clouds might suppress scintillation</description><identifier>ISSN: 0048-6604</identifier><identifier>EISSN: 1944-799X</identifier><identifier>DOI: 10.1002/2016RS006085</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Clouds ; Conductance ; Density ; Electric fields ; Environment ; F region ; Flow ; Ionosphere ; ionosphere: active experiments ; Irregularities ; Latitude ; Mathematical analysis ; Metals ; Plasma ; Plasma clouds ; Plumes ; Radar ; Radio ; Resistance ; Scintillation ; Simulation ; Stability ; Taylor instability ; Tracking</subject><ispartof>Radio science, 2017-05, Vol.52 (5), p.604-615</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3448-8eac1b602db058d4479dba3744f9cc98544d277369901a88038038667aeb68803</citedby><cites>FETCH-LOGICAL-c3448-8eac1b602db058d4479dba3744f9cc98544d277369901a88038038667aeb68803</cites><orcidid>0000-0001-7179-0298 ; 0000-0002-2067-1579 ; 0000-0002-3240-9308 ; 0000-0002-6940-0112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016RS006085$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016RS006085$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11513,27923,27924,45573,45574,46408,46467,46832,46891</link.rule.ids></links><search><creatorcontrib>Retterer, John</creatorcontrib><creatorcontrib>Groves, Keith M.</creatorcontrib><creatorcontrib>Pedersen, Todd R.</creatorcontrib><creatorcontrib>Caton, Ronald G.</creatorcontrib><title>The electrodynamic effects of MOSC‐like plasma clouds</title><title>Radio science</title><description>The effects on the plasma/electrodynamic environment in the low‐latitude ionosphere produced by the artificial plasma clouds created in the Metal Oxide Space Cloud (MOSC) experiment are studied via simulations. The electric fields and plasma flow in the vicinity of the cloud are calculated using its estimated field‐line‐integrated conductance; it is found that the “comma‐like” flow around the cloud seen in the ALTAIR (Advanced Research Project Agency [ARPA] Long‐range Tracking and Identification Radar) observations can be explained by the perturbations to the electric field produced by the conductance gradients around the cloud. Next, the conductance is introduced into a simulation of the development of the Rayleigh‐Taylor instability. The simulations suggest that a moderately denser cloud than the MOSC cloud, closer to the bottom edge of the F layer, could indeed suppress the development of the low‐density plumes and the shorter‐wavelength irregularities associated with radio scintillation that form with the Rayleigh‐Taylor instability in the low‐latitude ionosphere. Key Points The electrodynamic effects of the MOSC plasma clouds are explored with simulations The potential for chemical releases to quench radio scintillation is examined It is found that modest enhancement of the MOSC clouds might suppress scintillation</description><subject>Clouds</subject><subject>Conductance</subject><subject>Density</subject><subject>Electric fields</subject><subject>Environment</subject><subject>F region</subject><subject>Flow</subject><subject>Ionosphere</subject><subject>ionosphere: active experiments</subject><subject>Irregularities</subject><subject>Latitude</subject><subject>Mathematical analysis</subject><subject>Metals</subject><subject>Plasma</subject><subject>Plasma clouds</subject><subject>Plumes</subject><subject>Radar</subject><subject>Radio</subject><subject>Resistance</subject><subject>Scintillation</subject><subject>Simulation</subject><subject>Stability</subject><subject>Taylor instability</subject><subject>Tracking</subject><issn>0048-6604</issn><issn>1944-799X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AUhQdRMFZ3PkDArdE7k5v5WUq1KlQKbQV3w2QywdS0qTMNkp2P4DP6JCbUhSvhwOXAxz2cQ8g5hSsKwK4ZUD5fAHCQ2QGJqEJMhFIvhyQCQJlwDnhMTkJYAVDMOEZELF9d7Gpnd74puo1ZVzZ2Zdn7EDdl_DRbjL8_v-rqzcXb2oS1iW3dtEU4JUelqYM7-70j8jy5W44fkuns_nF8M01sin2idMbSnAMrcshkgShUkZtUIJbKWiUzxIIJkXKlgBopIR3EuTAu54MdkYv9361v3lsXdnrVtH7TR2qqQCrKMkh76nJPWd-E4F2pt75aG99pCnqYRv-dpsfZHv-oatf9y-r57YJBXyX9AZmpYt8</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Retterer, John</creator><creator>Groves, Keith M.</creator><creator>Pedersen, Todd R.</creator><creator>Caton, Ronald G.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7179-0298</orcidid><orcidid>https://orcid.org/0000-0002-2067-1579</orcidid><orcidid>https://orcid.org/0000-0002-3240-9308</orcidid><orcidid>https://orcid.org/0000-0002-6940-0112</orcidid></search><sort><creationdate>201705</creationdate><title>The electrodynamic effects of MOSC‐like plasma clouds</title><author>Retterer, John ; Groves, Keith M. ; Pedersen, Todd R. ; Caton, Ronald G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3448-8eac1b602db058d4479dba3744f9cc98544d277369901a88038038667aeb68803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Clouds</topic><topic>Conductance</topic><topic>Density</topic><topic>Electric fields</topic><topic>Environment</topic><topic>F region</topic><topic>Flow</topic><topic>Ionosphere</topic><topic>ionosphere: active experiments</topic><topic>Irregularities</topic><topic>Latitude</topic><topic>Mathematical analysis</topic><topic>Metals</topic><topic>Plasma</topic><topic>Plasma clouds</topic><topic>Plumes</topic><topic>Radar</topic><topic>Radio</topic><topic>Resistance</topic><topic>Scintillation</topic><topic>Simulation</topic><topic>Stability</topic><topic>Taylor instability</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Retterer, John</creatorcontrib><creatorcontrib>Groves, Keith M.</creatorcontrib><creatorcontrib>Pedersen, Todd R.</creatorcontrib><creatorcontrib>Caton, Ronald G.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Radio science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Retterer, John</au><au>Groves, Keith M.</au><au>Pedersen, Todd R.</au><au>Caton, Ronald G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The electrodynamic effects of MOSC‐like plasma clouds</atitle><jtitle>Radio science</jtitle><date>2017-05</date><risdate>2017</risdate><volume>52</volume><issue>5</issue><spage>604</spage><epage>615</epage><pages>604-615</pages><issn>0048-6604</issn><eissn>1944-799X</eissn><abstract>The effects on the plasma/electrodynamic environment in the low‐latitude ionosphere produced by the artificial plasma clouds created in the Metal Oxide Space Cloud (MOSC) experiment are studied via simulations. The electric fields and plasma flow in the vicinity of the cloud are calculated using its estimated field‐line‐integrated conductance; it is found that the “comma‐like” flow around the cloud seen in the ALTAIR (Advanced Research Project Agency [ARPA] Long‐range Tracking and Identification Radar) observations can be explained by the perturbations to the electric field produced by the conductance gradients around the cloud. Next, the conductance is introduced into a simulation of the development of the Rayleigh‐Taylor instability. The simulations suggest that a moderately denser cloud than the MOSC cloud, closer to the bottom edge of the F layer, could indeed suppress the development of the low‐density plumes and the shorter‐wavelength irregularities associated with radio scintillation that form with the Rayleigh‐Taylor instability in the low‐latitude ionosphere. Key Points The electrodynamic effects of the MOSC plasma clouds are explored with simulations The potential for chemical releases to quench radio scintillation is examined It is found that modest enhancement of the MOSC clouds might suppress scintillation</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2016RS006085</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7179-0298</orcidid><orcidid>https://orcid.org/0000-0002-2067-1579</orcidid><orcidid>https://orcid.org/0000-0002-3240-9308</orcidid><orcidid>https://orcid.org/0000-0002-6940-0112</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0048-6604
ispartof Radio science, 2017-05, Vol.52 (5), p.604-615
issn 0048-6604
1944-799X
language eng
recordid cdi_proquest_journals_1908912503
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library All Journals
subjects Clouds
Conductance
Density
Electric fields
Environment
F region
Flow
Ionosphere
ionosphere: active experiments
Irregularities
Latitude
Mathematical analysis
Metals
Plasma
Plasma clouds
Plumes
Radar
Radio
Resistance
Scintillation
Simulation
Stability
Taylor instability
Tracking
title The electrodynamic effects of MOSC‐like plasma clouds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A50%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20electrodynamic%20effects%20of%20MOSC%E2%80%90like%20plasma%20clouds&rft.jtitle=Radio%20science&rft.au=Retterer,%20John&rft.date=2017-05&rft.volume=52&rft.issue=5&rft.spage=604&rft.epage=615&rft.pages=604-615&rft.issn=0048-6604&rft.eissn=1944-799X&rft_id=info:doi/10.1002/2016RS006085&rft_dat=%3Cproquest_cross%3E1908912503%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1908912503&rft_id=info:pmid/&rfr_iscdi=true