Nash equilibria in location games on a network

We study the existence and determination of Nash equilibria (NE) in location games where firms compete for the market with the aim of profit maximization. Each competing firm locates one facility at one point on a network and customers, which are located at the nodes of the network, distribute their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:OR Spectrum 2017-07, Vol.39 (3), p.775-791
Hauptverfasser: Pelegrín, Mercedes, Pelegrín, Blas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 791
container_issue 3
container_start_page 775
container_title OR Spectrum
container_volume 39
creator Pelegrín, Mercedes
Pelegrín, Blas
description We study the existence and determination of Nash equilibria (NE) in location games where firms compete for the market with the aim of profit maximization. Each competing firm locates one facility at one point on a network and customers, which are located at the nodes of the network, distribute their buying power between the firms from which they get a minimum price. Two cases are considered depending on price policy: mill pricing and delivered pricing. In the former, the existence of NE depends on the structure of the network and the distribution of demand among its nodes. We give some conditions for the existence of NE, taking into account whether co-location is permitted and whether locations are restricted to nodes. Regarding delivered pricing policy, NE always exist at the nodes if production cost along any edge of the network is concave. A mixed integer linear programming formulation is proposed to find them.
doi_str_mv 10.1007/s00291-017-0472-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1908686700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1908686700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-af7dbfcd954a96be0233021eb1d1867e08b9832920a5d30b82c513f7015e902e3</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqHwA7hF4uyyazt-HFHFS6rgAmfLSZySkiatnQjx73EVDlw47Ur7zaxmCLlGWCKAuo0AzCAFVBSEYlSckAwFl1RyEKckSwekUkh9Ti5i3AIUSnGdkeWLix-5P0xt15ahdXnb591QubEd-nzjdj7maXF578evIXxekrPGddFf_c4FeX-4f1s90fXr4_Pqbk0rbthIXaPqsqlqUwhnZOmBcQ4MfYk1aqk86NJozgwDV9QcSs2qAnmjAAtvgHm-IDez7z4Mh8nH0W6HKfTppUUDWiYTgEThTFVhiDH4xu5Du3Ph2yLYYy12rsWm9PZYixVJw2ZNTGy_8eGP87-iH1GsYtM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1908686700</pqid></control><display><type>article</type><title>Nash equilibria in location games on a network</title><source>SpringerLink Journals</source><source>Business Source Complete</source><creator>Pelegrín, Mercedes ; Pelegrín, Blas</creator><creatorcontrib>Pelegrín, Mercedes ; Pelegrín, Blas</creatorcontrib><description>We study the existence and determination of Nash equilibria (NE) in location games where firms compete for the market with the aim of profit maximization. Each competing firm locates one facility at one point on a network and customers, which are located at the nodes of the network, distribute their buying power between the firms from which they get a minimum price. Two cases are considered depending on price policy: mill pricing and delivered pricing. In the former, the existence of NE depends on the structure of the network and the distribution of demand among its nodes. We give some conditions for the existence of NE, taking into account whether co-location is permitted and whether locations are restricted to nodes. Regarding delivered pricing policy, NE always exist at the nodes if production cost along any edge of the network is concave. A mixed integer linear programming formulation is proposed to find them.</description><identifier>ISSN: 0171-6468</identifier><identifier>EISSN: 1436-6304</identifier><identifier>DOI: 10.1007/s00291-017-0472-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Business and Management ; Buying ; Calculus of Variations and Optimal Control; Optimization ; Competition ; Customers ; Demand ; Economic models ; Game theory ; Integer programming ; Linear programming ; Marketing ; Markets ; Maximization ; Mixed integer ; Operations Research/Decision Theory ; Pricing ; Pricing policies ; Regular Article ; Studies</subject><ispartof>OR Spectrum, 2017-07, Vol.39 (3), p.775-791</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>OR Spectrum is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-af7dbfcd954a96be0233021eb1d1867e08b9832920a5d30b82c513f7015e902e3</citedby><cites>FETCH-LOGICAL-c392t-af7dbfcd954a96be0233021eb1d1867e08b9832920a5d30b82c513f7015e902e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00291-017-0472-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00291-017-0472-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Pelegrín, Mercedes</creatorcontrib><creatorcontrib>Pelegrín, Blas</creatorcontrib><title>Nash equilibria in location games on a network</title><title>OR Spectrum</title><addtitle>OR Spectrum</addtitle><description>We study the existence and determination of Nash equilibria (NE) in location games where firms compete for the market with the aim of profit maximization. Each competing firm locates one facility at one point on a network and customers, which are located at the nodes of the network, distribute their buying power between the firms from which they get a minimum price. Two cases are considered depending on price policy: mill pricing and delivered pricing. In the former, the existence of NE depends on the structure of the network and the distribution of demand among its nodes. We give some conditions for the existence of NE, taking into account whether co-location is permitted and whether locations are restricted to nodes. Regarding delivered pricing policy, NE always exist at the nodes if production cost along any edge of the network is concave. A mixed integer linear programming formulation is proposed to find them.</description><subject>Business and Management</subject><subject>Buying</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Competition</subject><subject>Customers</subject><subject>Demand</subject><subject>Economic models</subject><subject>Game theory</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Marketing</subject><subject>Markets</subject><subject>Maximization</subject><subject>Mixed integer</subject><subject>Operations Research/Decision Theory</subject><subject>Pricing</subject><subject>Pricing policies</subject><subject>Regular Article</subject><subject>Studies</subject><issn>0171-6468</issn><issn>1436-6304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtPwzAQhC0EEqHwA7hF4uyyazt-HFHFS6rgAmfLSZySkiatnQjx73EVDlw47Ur7zaxmCLlGWCKAuo0AzCAFVBSEYlSckAwFl1RyEKckSwekUkh9Ti5i3AIUSnGdkeWLix-5P0xt15ahdXnb591QubEd-nzjdj7maXF578evIXxekrPGddFf_c4FeX-4f1s90fXr4_Pqbk0rbthIXaPqsqlqUwhnZOmBcQ4MfYk1aqk86NJozgwDV9QcSs2qAnmjAAtvgHm-IDez7z4Mh8nH0W6HKfTppUUDWiYTgEThTFVhiDH4xu5Du3Ph2yLYYy12rsWm9PZYixVJw2ZNTGy_8eGP87-iH1GsYtM</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Pelegrín, Mercedes</creator><creator>Pelegrín, Blas</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L7M</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20170701</creationdate><title>Nash equilibria in location games on a network</title><author>Pelegrín, Mercedes ; Pelegrín, Blas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-af7dbfcd954a96be0233021eb1d1867e08b9832920a5d30b82c513f7015e902e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Business and Management</topic><topic>Buying</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Competition</topic><topic>Customers</topic><topic>Demand</topic><topic>Economic models</topic><topic>Game theory</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Marketing</topic><topic>Markets</topic><topic>Maximization</topic><topic>Mixed integer</topic><topic>Operations Research/Decision Theory</topic><topic>Pricing</topic><topic>Pricing policies</topic><topic>Regular Article</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pelegrín, Mercedes</creatorcontrib><creatorcontrib>Pelegrín, Blas</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>OR Spectrum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pelegrín, Mercedes</au><au>Pelegrín, Blas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nash equilibria in location games on a network</atitle><jtitle>OR Spectrum</jtitle><stitle>OR Spectrum</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>39</volume><issue>3</issue><spage>775</spage><epage>791</epage><pages>775-791</pages><issn>0171-6468</issn><eissn>1436-6304</eissn><abstract>We study the existence and determination of Nash equilibria (NE) in location games where firms compete for the market with the aim of profit maximization. Each competing firm locates one facility at one point on a network and customers, which are located at the nodes of the network, distribute their buying power between the firms from which they get a minimum price. Two cases are considered depending on price policy: mill pricing and delivered pricing. In the former, the existence of NE depends on the structure of the network and the distribution of demand among its nodes. We give some conditions for the existence of NE, taking into account whether co-location is permitted and whether locations are restricted to nodes. Regarding delivered pricing policy, NE always exist at the nodes if production cost along any edge of the network is concave. A mixed integer linear programming formulation is proposed to find them.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00291-017-0472-4</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0171-6468
ispartof OR Spectrum, 2017-07, Vol.39 (3), p.775-791
issn 0171-6468
1436-6304
language eng
recordid cdi_proquest_journals_1908686700
source SpringerLink Journals; Business Source Complete
subjects Business and Management
Buying
Calculus of Variations and Optimal Control
Optimization
Competition
Customers
Demand
Economic models
Game theory
Integer programming
Linear programming
Marketing
Markets
Maximization
Mixed integer
Operations Research/Decision Theory
Pricing
Pricing policies
Regular Article
Studies
title Nash equilibria in location games on a network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A56%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nash%20equilibria%20in%20location%20games%20on%20a%20network&rft.jtitle=OR%20Spectrum&rft.au=Pelegr%C3%ADn,%20Mercedes&rft.date=2017-07-01&rft.volume=39&rft.issue=3&rft.spage=775&rft.epage=791&rft.pages=775-791&rft.issn=0171-6468&rft.eissn=1436-6304&rft_id=info:doi/10.1007/s00291-017-0472-4&rft_dat=%3Cproquest_cross%3E1908686700%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1908686700&rft_id=info:pmid/&rfr_iscdi=true