Parallelizing Multimodal Background Modeling on a Low-Power Integrated GPU
Background modeling techniques for embedded computer vision applications must balance accuracy, speed, and power. Basic background modeling techniques run quickly, but their accuracy is not sufficient for computer vision problems involving dynamic background. In contrast, adaptive background modelin...
Gespeichert in:
Veröffentlicht in: | Journal of signal processing systems 2017-07, Vol.88 (1), p.43-53 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 53 |
---|---|
container_issue | 1 |
container_start_page | 43 |
container_title | Journal of signal processing systems |
container_volume | 88 |
creator | Azmat, Shoaib Wills, Linda Wills, Scott |
description | Background modeling techniques for embedded computer vision applications must balance accuracy, speed, and power. Basic background modeling techniques run quickly, but their accuracy is not sufficient for computer vision problems involving dynamic background. In contrast, adaptive background modeling techniques are more robust, but run more slowly. Due to its high inherent fine-grain parallelism, robust adaptive background modeling has been implemented on GPUs with significant performance improvements over CPUs. However, these implementations are infeasible in embedded applications due to the high power ratings of the targeted general-purpose GPU platforms. This paper focuses on exploiting fine-grain data parallelism and optimizing memory access patterns to target a low-cost adaptive background modeling algorithm multimodal mean (MMM) to a low-power GPU with thermal design power (TDP) of only 12 watts. The algorithm has comparable accuracy with the Gaussian mixture model (GMM) algorithm, but less computational and memory cost. It achieves a frame rate of 392 fps with a full VGA resolution (640x480) frame on the low-power integrated GPU NVIDIA ION. This is a 20x speed-up of the MMM algorithm compared to the embedded CPU platform Intel Atom of comparable TDP. In addition, the MMM algorithm attains a 5-6x speed up over the GMM implementation on the ION GPU platform. |
doi_str_mv | 10.1007/s11265-016-1111-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1907348233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1907348233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-267881d0663a722b23abd2e45bd76ff1d08ebe2cbaf46af98ba9dffa7b62e86a3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd_gLeC52hesqbpUYfOyYY7uHNIm6R0ds1MWsb215tRBS--y3vw_fHgg9AtkHsgJHsIAJSnmADHEAcfz9AIcpZjAZCe_94ExCW6CmFDCCdZCiP0tlJeNY1p6mPdVsmyb7p667RqkidVflbe9a1Olk5HQ5Rdm6hk4fZ45fbGJ_O2M5VXndHJbLW-RhdWNcHc_OwxWr88f0xf8eJ9Np8-LnDJgHeY8kwI0IRzpjJKC8pUoamZpIXOuLVREaYwtCyUnXBlc1GoXFursoJTI7hiY3Q39O68--pN6OTG9b6NLyXkJGMTQRmLLhhcpXcheGPlztdb5Q8SiDwhkwMyGZHJEzJ5jBk6ZEL0tpXxf5r_DX0DULVvVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1907348233</pqid></control><display><type>article</type><title>Parallelizing Multimodal Background Modeling on a Low-Power Integrated GPU</title><source>Springer Nature - Complete Springer Journals</source><creator>Azmat, Shoaib ; Wills, Linda ; Wills, Scott</creator><creatorcontrib>Azmat, Shoaib ; Wills, Linda ; Wills, Scott</creatorcontrib><description>Background modeling techniques for embedded computer vision applications must balance accuracy, speed, and power. Basic background modeling techniques run quickly, but their accuracy is not sufficient for computer vision problems involving dynamic background. In contrast, adaptive background modeling techniques are more robust, but run more slowly. Due to its high inherent fine-grain parallelism, robust adaptive background modeling has been implemented on GPUs with significant performance improvements over CPUs. However, these implementations are infeasible in embedded applications due to the high power ratings of the targeted general-purpose GPU platforms. This paper focuses on exploiting fine-grain data parallelism and optimizing memory access patterns to target a low-cost adaptive background modeling algorithm multimodal mean (MMM) to a low-power GPU with thermal design power (TDP) of only 12 watts. The algorithm has comparable accuracy with the Gaussian mixture model (GMM) algorithm, but less computational and memory cost. It achieves a frame rate of 392 fps with a full VGA resolution (640x480) frame on the low-power integrated GPU NVIDIA ION. This is a 20x speed-up of the MMM algorithm compared to the embedded CPU platform Intel Atom of comparable TDP. In addition, the MMM algorithm attains a 5-6x speed up over the GMM implementation on the ION GPU platform.</description><identifier>ISSN: 1939-8018</identifier><identifier>EISSN: 1939-8115</identifier><identifier>DOI: 10.1007/s11265-016-1111-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Adaptive algorithms ; Algorithms ; Circuits and Systems ; Computer Imaging ; Computer memory ; Computer vision ; Electrical Engineering ; Engineering ; Image Processing and Computer Vision ; Mathematical models ; Optimization ; Parallel processing ; Pattern Recognition ; Pattern Recognition and Graphics ; Platforms ; Ratings ; Robustness ; Signal,Image and Speech Processing ; Thermal design ; Vision</subject><ispartof>Journal of signal processing systems, 2017-07, Vol.88 (1), p.43-53</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-267881d0663a722b23abd2e45bd76ff1d08ebe2cbaf46af98ba9dffa7b62e86a3</citedby><cites>FETCH-LOGICAL-c316t-267881d0663a722b23abd2e45bd76ff1d08ebe2cbaf46af98ba9dffa7b62e86a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11265-016-1111-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11265-016-1111-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Azmat, Shoaib</creatorcontrib><creatorcontrib>Wills, Linda</creatorcontrib><creatorcontrib>Wills, Scott</creatorcontrib><title>Parallelizing Multimodal Background Modeling on a Low-Power Integrated GPU</title><title>Journal of signal processing systems</title><addtitle>J Sign Process Syst</addtitle><description>Background modeling techniques for embedded computer vision applications must balance accuracy, speed, and power. Basic background modeling techniques run quickly, but their accuracy is not sufficient for computer vision problems involving dynamic background. In contrast, adaptive background modeling techniques are more robust, but run more slowly. Due to its high inherent fine-grain parallelism, robust adaptive background modeling has been implemented on GPUs with significant performance improvements over CPUs. However, these implementations are infeasible in embedded applications due to the high power ratings of the targeted general-purpose GPU platforms. This paper focuses on exploiting fine-grain data parallelism and optimizing memory access patterns to target a low-cost adaptive background modeling algorithm multimodal mean (MMM) to a low-power GPU with thermal design power (TDP) of only 12 watts. The algorithm has comparable accuracy with the Gaussian mixture model (GMM) algorithm, but less computational and memory cost. It achieves a frame rate of 392 fps with a full VGA resolution (640x480) frame on the low-power integrated GPU NVIDIA ION. This is a 20x speed-up of the MMM algorithm compared to the embedded CPU platform Intel Atom of comparable TDP. In addition, the MMM algorithm attains a 5-6x speed up over the GMM implementation on the ION GPU platform.</description><subject>Accuracy</subject><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Circuits and Systems</subject><subject>Computer Imaging</subject><subject>Computer memory</subject><subject>Computer vision</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Image Processing and Computer Vision</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Parallel processing</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Platforms</subject><subject>Ratings</subject><subject>Robustness</subject><subject>Signal,Image and Speech Processing</subject><subject>Thermal design</subject><subject>Vision</subject><issn>1939-8018</issn><issn>1939-8115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd_gLeC52hesqbpUYfOyYY7uHNIm6R0ds1MWsb215tRBS--y3vw_fHgg9AtkHsgJHsIAJSnmADHEAcfz9AIcpZjAZCe_94ExCW6CmFDCCdZCiP0tlJeNY1p6mPdVsmyb7p667RqkidVflbe9a1Olk5HQ5Rdm6hk4fZ45fbGJ_O2M5VXndHJbLW-RhdWNcHc_OwxWr88f0xf8eJ9Np8-LnDJgHeY8kwI0IRzpjJKC8pUoamZpIXOuLVREaYwtCyUnXBlc1GoXFursoJTI7hiY3Q39O68--pN6OTG9b6NLyXkJGMTQRmLLhhcpXcheGPlztdb5Q8SiDwhkwMyGZHJEzJ5jBk6ZEL0tpXxf5r_DX0DULVvVw</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Azmat, Shoaib</creator><creator>Wills, Linda</creator><creator>Wills, Scott</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170701</creationdate><title>Parallelizing Multimodal Background Modeling on a Low-Power Integrated GPU</title><author>Azmat, Shoaib ; Wills, Linda ; Wills, Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-267881d0663a722b23abd2e45bd76ff1d08ebe2cbaf46af98ba9dffa7b62e86a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Circuits and Systems</topic><topic>Computer Imaging</topic><topic>Computer memory</topic><topic>Computer vision</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Image Processing and Computer Vision</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Parallel processing</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Platforms</topic><topic>Ratings</topic><topic>Robustness</topic><topic>Signal,Image and Speech Processing</topic><topic>Thermal design</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azmat, Shoaib</creatorcontrib><creatorcontrib>Wills, Linda</creatorcontrib><creatorcontrib>Wills, Scott</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of signal processing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azmat, Shoaib</au><au>Wills, Linda</au><au>Wills, Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallelizing Multimodal Background Modeling on a Low-Power Integrated GPU</atitle><jtitle>Journal of signal processing systems</jtitle><stitle>J Sign Process Syst</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>88</volume><issue>1</issue><spage>43</spage><epage>53</epage><pages>43-53</pages><issn>1939-8018</issn><eissn>1939-8115</eissn><abstract>Background modeling techniques for embedded computer vision applications must balance accuracy, speed, and power. Basic background modeling techniques run quickly, but their accuracy is not sufficient for computer vision problems involving dynamic background. In contrast, adaptive background modeling techniques are more robust, but run more slowly. Due to its high inherent fine-grain parallelism, robust adaptive background modeling has been implemented on GPUs with significant performance improvements over CPUs. However, these implementations are infeasible in embedded applications due to the high power ratings of the targeted general-purpose GPU platforms. This paper focuses on exploiting fine-grain data parallelism and optimizing memory access patterns to target a low-cost adaptive background modeling algorithm multimodal mean (MMM) to a low-power GPU with thermal design power (TDP) of only 12 watts. The algorithm has comparable accuracy with the Gaussian mixture model (GMM) algorithm, but less computational and memory cost. It achieves a frame rate of 392 fps with a full VGA resolution (640x480) frame on the low-power integrated GPU NVIDIA ION. This is a 20x speed-up of the MMM algorithm compared to the embedded CPU platform Intel Atom of comparable TDP. In addition, the MMM algorithm attains a 5-6x speed up over the GMM implementation on the ION GPU platform.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11265-016-1111-z</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-8018 |
ispartof | Journal of signal processing systems, 2017-07, Vol.88 (1), p.43-53 |
issn | 1939-8018 1939-8115 |
language | eng |
recordid | cdi_proquest_journals_1907348233 |
source | Springer Nature - Complete Springer Journals |
subjects | Accuracy Adaptive algorithms Algorithms Circuits and Systems Computer Imaging Computer memory Computer vision Electrical Engineering Engineering Image Processing and Computer Vision Mathematical models Optimization Parallel processing Pattern Recognition Pattern Recognition and Graphics Platforms Ratings Robustness Signal,Image and Speech Processing Thermal design Vision |
title | Parallelizing Multimodal Background Modeling on a Low-Power Integrated GPU |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallelizing%20Multimodal%20Background%20Modeling%20on%20a%20Low-Power%20Integrated%20GPU&rft.jtitle=Journal%20of%20signal%20processing%20systems&rft.au=Azmat,%20Shoaib&rft.date=2017-07-01&rft.volume=88&rft.issue=1&rft.spage=43&rft.epage=53&rft.pages=43-53&rft.issn=1939-8018&rft.eissn=1939-8115&rft_id=info:doi/10.1007/s11265-016-1111-z&rft_dat=%3Cproquest_cross%3E1907348233%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1907348233&rft_id=info:pmid/&rfr_iscdi=true |