Parallelizing Multimodal Background Modeling on a Low-Power Integrated GPU

Background modeling techniques for embedded computer vision applications must balance accuracy, speed, and power. Basic background modeling techniques run quickly, but their accuracy is not sufficient for computer vision problems involving dynamic background. In contrast, adaptive background modelin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of signal processing systems 2017-07, Vol.88 (1), p.43-53
Hauptverfasser: Azmat, Shoaib, Wills, Linda, Wills, Scott
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 53
container_issue 1
container_start_page 43
container_title Journal of signal processing systems
container_volume 88
creator Azmat, Shoaib
Wills, Linda
Wills, Scott
description Background modeling techniques for embedded computer vision applications must balance accuracy, speed, and power. Basic background modeling techniques run quickly, but their accuracy is not sufficient for computer vision problems involving dynamic background. In contrast, adaptive background modeling techniques are more robust, but run more slowly. Due to its high inherent fine-grain parallelism, robust adaptive background modeling has been implemented on GPUs with significant performance improvements over CPUs. However, these implementations are infeasible in embedded applications due to the high power ratings of the targeted general-purpose GPU platforms. This paper focuses on exploiting fine-grain data parallelism and optimizing memory access patterns to target a low-cost adaptive background modeling algorithm multimodal mean (MMM) to a low-power GPU with thermal design power (TDP) of only 12 watts. The algorithm has comparable accuracy with the Gaussian mixture model (GMM) algorithm, but less computational and memory cost. It achieves a frame rate of 392 fps with a full VGA resolution (640x480) frame on the low-power integrated GPU NVIDIA ION. This is a 20x speed-up of the MMM algorithm compared to the embedded CPU platform Intel Atom of comparable TDP. In addition, the MMM algorithm attains a 5-6x speed up over the GMM implementation on the ION GPU platform.
doi_str_mv 10.1007/s11265-016-1111-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1907348233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1907348233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-267881d0663a722b23abd2e45bd76ff1d08ebe2cbaf46af98ba9dffa7b62e86a3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd_gLeC52hesqbpUYfOyYY7uHNIm6R0ds1MWsb215tRBS--y3vw_fHgg9AtkHsgJHsIAJSnmADHEAcfz9AIcpZjAZCe_94ExCW6CmFDCCdZCiP0tlJeNY1p6mPdVsmyb7p667RqkidVflbe9a1Olk5HQ5Rdm6hk4fZ45fbGJ_O2M5VXndHJbLW-RhdWNcHc_OwxWr88f0xf8eJ9Np8-LnDJgHeY8kwI0IRzpjJKC8pUoamZpIXOuLVREaYwtCyUnXBlc1GoXFursoJTI7hiY3Q39O68--pN6OTG9b6NLyXkJGMTQRmLLhhcpXcheGPlztdb5Q8SiDwhkwMyGZHJEzJ5jBk6ZEL0tpXxf5r_DX0DULVvVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1907348233</pqid></control><display><type>article</type><title>Parallelizing Multimodal Background Modeling on a Low-Power Integrated GPU</title><source>Springer Nature - Complete Springer Journals</source><creator>Azmat, Shoaib ; Wills, Linda ; Wills, Scott</creator><creatorcontrib>Azmat, Shoaib ; Wills, Linda ; Wills, Scott</creatorcontrib><description>Background modeling techniques for embedded computer vision applications must balance accuracy, speed, and power. Basic background modeling techniques run quickly, but their accuracy is not sufficient for computer vision problems involving dynamic background. In contrast, adaptive background modeling techniques are more robust, but run more slowly. Due to its high inherent fine-grain parallelism, robust adaptive background modeling has been implemented on GPUs with significant performance improvements over CPUs. However, these implementations are infeasible in embedded applications due to the high power ratings of the targeted general-purpose GPU platforms. This paper focuses on exploiting fine-grain data parallelism and optimizing memory access patterns to target a low-cost adaptive background modeling algorithm multimodal mean (MMM) to a low-power GPU with thermal design power (TDP) of only 12 watts. The algorithm has comparable accuracy with the Gaussian mixture model (GMM) algorithm, but less computational and memory cost. It achieves a frame rate of 392 fps with a full VGA resolution (640x480) frame on the low-power integrated GPU NVIDIA ION. This is a 20x speed-up of the MMM algorithm compared to the embedded CPU platform Intel Atom of comparable TDP. In addition, the MMM algorithm attains a 5-6x speed up over the GMM implementation on the ION GPU platform.</description><identifier>ISSN: 1939-8018</identifier><identifier>EISSN: 1939-8115</identifier><identifier>DOI: 10.1007/s11265-016-1111-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Adaptive algorithms ; Algorithms ; Circuits and Systems ; Computer Imaging ; Computer memory ; Computer vision ; Electrical Engineering ; Engineering ; Image Processing and Computer Vision ; Mathematical models ; Optimization ; Parallel processing ; Pattern Recognition ; Pattern Recognition and Graphics ; Platforms ; Ratings ; Robustness ; Signal,Image and Speech Processing ; Thermal design ; Vision</subject><ispartof>Journal of signal processing systems, 2017-07, Vol.88 (1), p.43-53</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-267881d0663a722b23abd2e45bd76ff1d08ebe2cbaf46af98ba9dffa7b62e86a3</citedby><cites>FETCH-LOGICAL-c316t-267881d0663a722b23abd2e45bd76ff1d08ebe2cbaf46af98ba9dffa7b62e86a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11265-016-1111-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11265-016-1111-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Azmat, Shoaib</creatorcontrib><creatorcontrib>Wills, Linda</creatorcontrib><creatorcontrib>Wills, Scott</creatorcontrib><title>Parallelizing Multimodal Background Modeling on a Low-Power Integrated GPU</title><title>Journal of signal processing systems</title><addtitle>J Sign Process Syst</addtitle><description>Background modeling techniques for embedded computer vision applications must balance accuracy, speed, and power. Basic background modeling techniques run quickly, but their accuracy is not sufficient for computer vision problems involving dynamic background. In contrast, adaptive background modeling techniques are more robust, but run more slowly. Due to its high inherent fine-grain parallelism, robust adaptive background modeling has been implemented on GPUs with significant performance improvements over CPUs. However, these implementations are infeasible in embedded applications due to the high power ratings of the targeted general-purpose GPU platforms. This paper focuses on exploiting fine-grain data parallelism and optimizing memory access patterns to target a low-cost adaptive background modeling algorithm multimodal mean (MMM) to a low-power GPU with thermal design power (TDP) of only 12 watts. The algorithm has comparable accuracy with the Gaussian mixture model (GMM) algorithm, but less computational and memory cost. It achieves a frame rate of 392 fps with a full VGA resolution (640x480) frame on the low-power integrated GPU NVIDIA ION. This is a 20x speed-up of the MMM algorithm compared to the embedded CPU platform Intel Atom of comparable TDP. In addition, the MMM algorithm attains a 5-6x speed up over the GMM implementation on the ION GPU platform.</description><subject>Accuracy</subject><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Circuits and Systems</subject><subject>Computer Imaging</subject><subject>Computer memory</subject><subject>Computer vision</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Image Processing and Computer Vision</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Parallel processing</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Platforms</subject><subject>Ratings</subject><subject>Robustness</subject><subject>Signal,Image and Speech Processing</subject><subject>Thermal design</subject><subject>Vision</subject><issn>1939-8018</issn><issn>1939-8115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd_gLeC52hesqbpUYfOyYY7uHNIm6R0ds1MWsb215tRBS--y3vw_fHgg9AtkHsgJHsIAJSnmADHEAcfz9AIcpZjAZCe_94ExCW6CmFDCCdZCiP0tlJeNY1p6mPdVsmyb7p667RqkidVflbe9a1Olk5HQ5Rdm6hk4fZ45fbGJ_O2M5VXndHJbLW-RhdWNcHc_OwxWr88f0xf8eJ9Np8-LnDJgHeY8kwI0IRzpjJKC8pUoamZpIXOuLVREaYwtCyUnXBlc1GoXFursoJTI7hiY3Q39O68--pN6OTG9b6NLyXkJGMTQRmLLhhcpXcheGPlztdb5Q8SiDwhkwMyGZHJEzJ5jBk6ZEL0tpXxf5r_DX0DULVvVw</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Azmat, Shoaib</creator><creator>Wills, Linda</creator><creator>Wills, Scott</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170701</creationdate><title>Parallelizing Multimodal Background Modeling on a Low-Power Integrated GPU</title><author>Azmat, Shoaib ; Wills, Linda ; Wills, Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-267881d0663a722b23abd2e45bd76ff1d08ebe2cbaf46af98ba9dffa7b62e86a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Circuits and Systems</topic><topic>Computer Imaging</topic><topic>Computer memory</topic><topic>Computer vision</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Image Processing and Computer Vision</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Parallel processing</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Platforms</topic><topic>Ratings</topic><topic>Robustness</topic><topic>Signal,Image and Speech Processing</topic><topic>Thermal design</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azmat, Shoaib</creatorcontrib><creatorcontrib>Wills, Linda</creatorcontrib><creatorcontrib>Wills, Scott</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of signal processing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azmat, Shoaib</au><au>Wills, Linda</au><au>Wills, Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallelizing Multimodal Background Modeling on a Low-Power Integrated GPU</atitle><jtitle>Journal of signal processing systems</jtitle><stitle>J Sign Process Syst</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>88</volume><issue>1</issue><spage>43</spage><epage>53</epage><pages>43-53</pages><issn>1939-8018</issn><eissn>1939-8115</eissn><abstract>Background modeling techniques for embedded computer vision applications must balance accuracy, speed, and power. Basic background modeling techniques run quickly, but their accuracy is not sufficient for computer vision problems involving dynamic background. In contrast, adaptive background modeling techniques are more robust, but run more slowly. Due to its high inherent fine-grain parallelism, robust adaptive background modeling has been implemented on GPUs with significant performance improvements over CPUs. However, these implementations are infeasible in embedded applications due to the high power ratings of the targeted general-purpose GPU platforms. This paper focuses on exploiting fine-grain data parallelism and optimizing memory access patterns to target a low-cost adaptive background modeling algorithm multimodal mean (MMM) to a low-power GPU with thermal design power (TDP) of only 12 watts. The algorithm has comparable accuracy with the Gaussian mixture model (GMM) algorithm, but less computational and memory cost. It achieves a frame rate of 392 fps with a full VGA resolution (640x480) frame on the low-power integrated GPU NVIDIA ION. This is a 20x speed-up of the MMM algorithm compared to the embedded CPU platform Intel Atom of comparable TDP. In addition, the MMM algorithm attains a 5-6x speed up over the GMM implementation on the ION GPU platform.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11265-016-1111-z</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1939-8018
ispartof Journal of signal processing systems, 2017-07, Vol.88 (1), p.43-53
issn 1939-8018
1939-8115
language eng
recordid cdi_proquest_journals_1907348233
source Springer Nature - Complete Springer Journals
subjects Accuracy
Adaptive algorithms
Algorithms
Circuits and Systems
Computer Imaging
Computer memory
Computer vision
Electrical Engineering
Engineering
Image Processing and Computer Vision
Mathematical models
Optimization
Parallel processing
Pattern Recognition
Pattern Recognition and Graphics
Platforms
Ratings
Robustness
Signal,Image and Speech Processing
Thermal design
Vision
title Parallelizing Multimodal Background Modeling on a Low-Power Integrated GPU
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallelizing%20Multimodal%20Background%20Modeling%20on%20a%20Low-Power%20Integrated%20GPU&rft.jtitle=Journal%20of%20signal%20processing%20systems&rft.au=Azmat,%20Shoaib&rft.date=2017-07-01&rft.volume=88&rft.issue=1&rft.spage=43&rft.epage=53&rft.pages=43-53&rft.issn=1939-8018&rft.eissn=1939-8115&rft_id=info:doi/10.1007/s11265-016-1111-z&rft_dat=%3Cproquest_cross%3E1907348233%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1907348233&rft_id=info:pmid/&rfr_iscdi=true