On the projective Finsler metrizability and the integrability of Rapcsák equation

A. Rapcsák obtained necessary and sufficient conditions for the projective Finsler metrizability in terms of a second order partial differential system. In this paper we investigate the integrability of the Rapcsák system and the extended Rapcsák system, by using the Spencer version of the Cartan-Kä...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Czechoslovak Mathematical Journal 2017-06, Vol.67 (2), p.469-495
Hauptverfasser: Milkovszki, Tamás, Muzsnay, Zoltán
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 495
container_issue 2
container_start_page 469
container_title Czechoslovak Mathematical Journal
container_volume 67
creator Milkovszki, Tamás
Muzsnay, Zoltán
description A. Rapcsák obtained necessary and sufficient conditions for the projective Finsler metrizability in terms of a second order partial differential system. In this paper we investigate the integrability of the Rapcsák system and the extended Rapcsák system, by using the Spencer version of the Cartan-Kähler theorem. We also consider the extended Rapcsák system completed with the curvature condition. We prove that in the non-isotropic case there is a nontrivial Spencer cohomology group in the sequences determining the 2-acyclicity of the symbol of the corresponding differential operator. Therefore the system is not integrable and higher order obstruction exists.
doi_str_mv 10.21136/CMJ.2017.0010-16
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1907346013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1907346013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-18372393a5c8fc8c0e38109e770d0196dee57ebd3e02d1f68d96aef5bb0348873</originalsourceid><addsrcrecordid>eNp1kM9Kw0AQhxdRsFYfwFvAc-pMNtndHKVY_1ApFD0vm2RSt7ZJu7sV6tv4LL6YaavgxdPA8P1-M3yMXSIMEkQurodPj4MEUA4AEGIUR6yHmUziHFM8Zr1ui3Eq0uSUnXk_BwCOqeqx6aSJwitFK9fOqQz2naKRbfyCXLSk4OyHKezChm1kmmoP2ibQzP1u2zqamlXpvz7fIlpvTLBtc85OarPwdPEz--xldPs8vI_Hk7uH4c04LjliiFFxmfCcm6xUdalKIK4QcpISKsBcVESZpKLiBEmFtVBVLgzVWVEAT5WSvM-uDr3d7-sN-aDn7cY13UmNOUieCkDeUXigStd676jWK2eXxm01gt6r0506vVOnd-o0ii6THDK-Y5sZuT_N_4a-Aattcbc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1907346013</pqid></control><display><type>article</type><title>On the projective Finsler metrizability and the integrability of Rapcsák equation</title><source>SpringerLink Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Milkovszki, Tamás ; Muzsnay, Zoltán</creator><creatorcontrib>Milkovszki, Tamás ; Muzsnay, Zoltán</creatorcontrib><description>A. Rapcsák obtained necessary and sufficient conditions for the projective Finsler metrizability in terms of a second order partial differential system. In this paper we investigate the integrability of the Rapcsák system and the extended Rapcsák system, by using the Spencer version of the Cartan-Kähler theorem. We also consider the extended Rapcsák system completed with the curvature condition. We prove that in the non-isotropic case there is a nontrivial Spencer cohomology group in the sequences determining the 2-acyclicity of the symbol of the corresponding differential operator. Therefore the system is not integrable and higher order obstruction exists.</description><identifier>ISSN: 0011-4642</identifier><identifier>EISSN: 1572-9141</identifier><identifier>DOI: 10.21136/CMJ.2017.0010-16</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Convex and Discrete Geometry ; Curvature ; Integral calculus ; Integral equations ; Mathematical analysis ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations</subject><ispartof>Czechoslovak Mathematical Journal, 2017-06, Vol.67 (2), p.469-495</ispartof><rights>Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-18372393a5c8fc8c0e38109e770d0196dee57ebd3e02d1f68d96aef5bb0348873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.21136/CMJ.2017.0010-16$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.21136/CMJ.2017.0010-16$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Milkovszki, Tamás</creatorcontrib><creatorcontrib>Muzsnay, Zoltán</creatorcontrib><title>On the projective Finsler metrizability and the integrability of Rapcsák equation</title><title>Czechoslovak Mathematical Journal</title><addtitle>Czech Math J</addtitle><description>A. Rapcsák obtained necessary and sufficient conditions for the projective Finsler metrizability in terms of a second order partial differential system. In this paper we investigate the integrability of the Rapcsák system and the extended Rapcsák system, by using the Spencer version of the Cartan-Kähler theorem. We also consider the extended Rapcsák system completed with the curvature condition. We prove that in the non-isotropic case there is a nontrivial Spencer cohomology group in the sequences determining the 2-acyclicity of the symbol of the corresponding differential operator. Therefore the system is not integrable and higher order obstruction exists.</description><subject>Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Curvature</subject><subject>Integral calculus</subject><subject>Integral equations</subject><subject>Mathematical analysis</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><issn>0011-4642</issn><issn>1572-9141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM9Kw0AQhxdRsFYfwFvAc-pMNtndHKVY_1ApFD0vm2RSt7ZJu7sV6tv4LL6YaavgxdPA8P1-M3yMXSIMEkQurodPj4MEUA4AEGIUR6yHmUziHFM8Zr1ui3Eq0uSUnXk_BwCOqeqx6aSJwitFK9fOqQz2naKRbfyCXLSk4OyHKezChm1kmmoP2ibQzP1u2zqamlXpvz7fIlpvTLBtc85OarPwdPEz--xldPs8vI_Hk7uH4c04LjliiFFxmfCcm6xUdalKIK4QcpISKsBcVESZpKLiBEmFtVBVLgzVWVEAT5WSvM-uDr3d7-sN-aDn7cY13UmNOUieCkDeUXigStd676jWK2eXxm01gt6r0506vVOnd-o0ii6THDK-Y5sZuT_N_4a-Aattcbc</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Milkovszki, Tamás</creator><creator>Muzsnay, Zoltán</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170601</creationdate><title>On the projective Finsler metrizability and the integrability of Rapcsák equation</title><author>Milkovszki, Tamás ; Muzsnay, Zoltán</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-18372393a5c8fc8c0e38109e770d0196dee57ebd3e02d1f68d96aef5bb0348873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Curvature</topic><topic>Integral calculus</topic><topic>Integral equations</topic><topic>Mathematical analysis</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milkovszki, Tamás</creatorcontrib><creatorcontrib>Muzsnay, Zoltán</creatorcontrib><collection>CrossRef</collection><jtitle>Czechoslovak Mathematical Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milkovszki, Tamás</au><au>Muzsnay, Zoltán</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the projective Finsler metrizability and the integrability of Rapcsák equation</atitle><jtitle>Czechoslovak Mathematical Journal</jtitle><stitle>Czech Math J</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>67</volume><issue>2</issue><spage>469</spage><epage>495</epage><pages>469-495</pages><issn>0011-4642</issn><eissn>1572-9141</eissn><abstract>A. Rapcsák obtained necessary and sufficient conditions for the projective Finsler metrizability in terms of a second order partial differential system. In this paper we investigate the integrability of the Rapcsák system and the extended Rapcsák system, by using the Spencer version of the Cartan-Kähler theorem. We also consider the extended Rapcsák system completed with the curvature condition. We prove that in the non-isotropic case there is a nontrivial Spencer cohomology group in the sequences determining the 2-acyclicity of the symbol of the corresponding differential operator. Therefore the system is not integrable and higher order obstruction exists.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.21136/CMJ.2017.0010-16</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0011-4642
ispartof Czechoslovak Mathematical Journal, 2017-06, Vol.67 (2), p.469-495
issn 0011-4642
1572-9141
language eng
recordid cdi_proquest_journals_1907346013
source SpringerLink Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Analysis
Convex and Discrete Geometry
Curvature
Integral calculus
Integral equations
Mathematical analysis
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
title On the projective Finsler metrizability and the integrability of Rapcsák equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A57%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20projective%20Finsler%20metrizability%20and%20the%20integrability%20of%20Rapcs%C3%A1k%20equation&rft.jtitle=Czechoslovak%20Mathematical%20Journal&rft.au=Milkovszki,%20Tam%C3%A1s&rft.date=2017-06-01&rft.volume=67&rft.issue=2&rft.spage=469&rft.epage=495&rft.pages=469-495&rft.issn=0011-4642&rft.eissn=1572-9141&rft_id=info:doi/10.21136/CMJ.2017.0010-16&rft_dat=%3Cproquest_cross%3E1907346013%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1907346013&rft_id=info:pmid/&rfr_iscdi=true