On the projective Finsler metrizability and the integrability of Rapcsák equation
A. Rapcsák obtained necessary and sufficient conditions for the projective Finsler metrizability in terms of a second order partial differential system. In this paper we investigate the integrability of the Rapcsák system and the extended Rapcsák system, by using the Spencer version of the Cartan-Kä...
Gespeichert in:
Veröffentlicht in: | Czechoslovak Mathematical Journal 2017-06, Vol.67 (2), p.469-495 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 495 |
---|---|
container_issue | 2 |
container_start_page | 469 |
container_title | Czechoslovak Mathematical Journal |
container_volume | 67 |
creator | Milkovszki, Tamás Muzsnay, Zoltán |
description | A. Rapcsák obtained necessary and sufficient conditions for the projective Finsler metrizability in terms of a second order partial differential system. In this paper we investigate the integrability of the Rapcsák system and the extended Rapcsák system, by using the Spencer version of the Cartan-Kähler theorem. We also consider the extended Rapcsák system completed with the curvature condition. We prove that in the non-isotropic case there is a nontrivial Spencer cohomology group in the sequences determining the 2-acyclicity of the symbol of the corresponding differential operator. Therefore the system is not integrable and higher order obstruction exists. |
doi_str_mv | 10.21136/CMJ.2017.0010-16 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1907346013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1907346013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-18372393a5c8fc8c0e38109e770d0196dee57ebd3e02d1f68d96aef5bb0348873</originalsourceid><addsrcrecordid>eNp1kM9Kw0AQhxdRsFYfwFvAc-pMNtndHKVY_1ApFD0vm2RSt7ZJu7sV6tv4LL6YaavgxdPA8P1-M3yMXSIMEkQurodPj4MEUA4AEGIUR6yHmUziHFM8Zr1ui3Eq0uSUnXk_BwCOqeqx6aSJwitFK9fOqQz2naKRbfyCXLSk4OyHKezChm1kmmoP2ibQzP1u2zqamlXpvz7fIlpvTLBtc85OarPwdPEz--xldPs8vI_Hk7uH4c04LjliiFFxmfCcm6xUdalKIK4QcpISKsBcVESZpKLiBEmFtVBVLgzVWVEAT5WSvM-uDr3d7-sN-aDn7cY13UmNOUieCkDeUXigStd676jWK2eXxm01gt6r0506vVOnd-o0ii6THDK-Y5sZuT_N_4a-Aattcbc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1907346013</pqid></control><display><type>article</type><title>On the projective Finsler metrizability and the integrability of Rapcsák equation</title><source>SpringerLink Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Milkovszki, Tamás ; Muzsnay, Zoltán</creator><creatorcontrib>Milkovszki, Tamás ; Muzsnay, Zoltán</creatorcontrib><description>A. Rapcsák obtained necessary and sufficient conditions for the projective Finsler metrizability in terms of a second order partial differential system. In this paper we investigate the integrability of the Rapcsák system and the extended Rapcsák system, by using the Spencer version of the Cartan-Kähler theorem. We also consider the extended Rapcsák system completed with the curvature condition. We prove that in the non-isotropic case there is a nontrivial Spencer cohomology group in the sequences determining the 2-acyclicity of the symbol of the corresponding differential operator. Therefore the system is not integrable and higher order obstruction exists.</description><identifier>ISSN: 0011-4642</identifier><identifier>EISSN: 1572-9141</identifier><identifier>DOI: 10.21136/CMJ.2017.0010-16</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Convex and Discrete Geometry ; Curvature ; Integral calculus ; Integral equations ; Mathematical analysis ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations</subject><ispartof>Czechoslovak Mathematical Journal, 2017-06, Vol.67 (2), p.469-495</ispartof><rights>Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-18372393a5c8fc8c0e38109e770d0196dee57ebd3e02d1f68d96aef5bb0348873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.21136/CMJ.2017.0010-16$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.21136/CMJ.2017.0010-16$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Milkovszki, Tamás</creatorcontrib><creatorcontrib>Muzsnay, Zoltán</creatorcontrib><title>On the projective Finsler metrizability and the integrability of Rapcsák equation</title><title>Czechoslovak Mathematical Journal</title><addtitle>Czech Math J</addtitle><description>A. Rapcsák obtained necessary and sufficient conditions for the projective Finsler metrizability in terms of a second order partial differential system. In this paper we investigate the integrability of the Rapcsák system and the extended Rapcsák system, by using the Spencer version of the Cartan-Kähler theorem. We also consider the extended Rapcsák system completed with the curvature condition. We prove that in the non-isotropic case there is a nontrivial Spencer cohomology group in the sequences determining the 2-acyclicity of the symbol of the corresponding differential operator. Therefore the system is not integrable and higher order obstruction exists.</description><subject>Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Curvature</subject><subject>Integral calculus</subject><subject>Integral equations</subject><subject>Mathematical analysis</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><issn>0011-4642</issn><issn>1572-9141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM9Kw0AQhxdRsFYfwFvAc-pMNtndHKVY_1ApFD0vm2RSt7ZJu7sV6tv4LL6YaavgxdPA8P1-M3yMXSIMEkQurodPj4MEUA4AEGIUR6yHmUziHFM8Zr1ui3Eq0uSUnXk_BwCOqeqx6aSJwitFK9fOqQz2naKRbfyCXLSk4OyHKezChm1kmmoP2ibQzP1u2zqamlXpvz7fIlpvTLBtc85OarPwdPEz--xldPs8vI_Hk7uH4c04LjliiFFxmfCcm6xUdalKIK4QcpISKsBcVESZpKLiBEmFtVBVLgzVWVEAT5WSvM-uDr3d7-sN-aDn7cY13UmNOUieCkDeUXigStd676jWK2eXxm01gt6r0506vVOnd-o0ii6THDK-Y5sZuT_N_4a-Aattcbc</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Milkovszki, Tamás</creator><creator>Muzsnay, Zoltán</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170601</creationdate><title>On the projective Finsler metrizability and the integrability of Rapcsák equation</title><author>Milkovszki, Tamás ; Muzsnay, Zoltán</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-18372393a5c8fc8c0e38109e770d0196dee57ebd3e02d1f68d96aef5bb0348873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Curvature</topic><topic>Integral calculus</topic><topic>Integral equations</topic><topic>Mathematical analysis</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milkovszki, Tamás</creatorcontrib><creatorcontrib>Muzsnay, Zoltán</creatorcontrib><collection>CrossRef</collection><jtitle>Czechoslovak Mathematical Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milkovszki, Tamás</au><au>Muzsnay, Zoltán</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the projective Finsler metrizability and the integrability of Rapcsák equation</atitle><jtitle>Czechoslovak Mathematical Journal</jtitle><stitle>Czech Math J</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>67</volume><issue>2</issue><spage>469</spage><epage>495</epage><pages>469-495</pages><issn>0011-4642</issn><eissn>1572-9141</eissn><abstract>A. Rapcsák obtained necessary and sufficient conditions for the projective Finsler metrizability in terms of a second order partial differential system. In this paper we investigate the integrability of the Rapcsák system and the extended Rapcsák system, by using the Spencer version of the Cartan-Kähler theorem. We also consider the extended Rapcsák system completed with the curvature condition. We prove that in the non-isotropic case there is a nontrivial Spencer cohomology group in the sequences determining the 2-acyclicity of the symbol of the corresponding differential operator. Therefore the system is not integrable and higher order obstruction exists.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.21136/CMJ.2017.0010-16</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0011-4642 |
ispartof | Czechoslovak Mathematical Journal, 2017-06, Vol.67 (2), p.469-495 |
issn | 0011-4642 1572-9141 |
language | eng |
recordid | cdi_proquest_journals_1907346013 |
source | SpringerLink Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Analysis Convex and Discrete Geometry Curvature Integral calculus Integral equations Mathematical analysis Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Ordinary Differential Equations |
title | On the projective Finsler metrizability and the integrability of Rapcsák equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A57%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20projective%20Finsler%20metrizability%20and%20the%20integrability%20of%20Rapcs%C3%A1k%20equation&rft.jtitle=Czechoslovak%20Mathematical%20Journal&rft.au=Milkovszki,%20Tam%C3%A1s&rft.date=2017-06-01&rft.volume=67&rft.issue=2&rft.spage=469&rft.epage=495&rft.pages=469-495&rft.issn=0011-4642&rft.eissn=1572-9141&rft_id=info:doi/10.21136/CMJ.2017.0010-16&rft_dat=%3Cproquest_cross%3E1907346013%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1907346013&rft_id=info:pmid/&rfr_iscdi=true |