On optimal group claims at voting in a stochastic environment

There is a paradox in the model of social dynamics determined by voting in a stochastic environment (the ViSE model) called “pit of losses.” It consists in the fact that a series of democratic decisions may systematically lead the society to the states unacceptable for all the voters. The paper exam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automation and remote control 2017-06, Vol.78 (6), p.1087-1100
Hauptverfasser: Malyshev, V. A., Chebotarev, P. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1100
container_issue 6
container_start_page 1087
container_title Automation and remote control
container_volume 78
creator Malyshev, V. A.
Chebotarev, P. Yu
description There is a paradox in the model of social dynamics determined by voting in a stochastic environment (the ViSE model) called “pit of losses.” It consists in the fact that a series of democratic decisions may systematically lead the society to the states unacceptable for all the voters. The paper examines how this paradox can be neutralized by the presence in society of a group that votes for its benefit and can regulate the threshold of its claims. We obtain and analyze analytical results characterizing the welfare of the whole society, the group, and the other participants as functions of the said claims threshold.
doi_str_mv 10.1134/S0005117917060091
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1907343625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1907343625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-eb6e207adcca2e58539363b5415531f9c0279c459970441b40b6edd4cf0d3cab3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWB8_wF3A9ei9uclMs3AhxRcUulDXQyaTqVPaZEzSgv_eKXUhiKu7OOc7h3sYu0K4QSR5-woACrHSWEEJoPGITbCEaUFA4phN9nKx10_ZWUorAEQQNGF3C8_DkPuNWfNlDNuB27XpN4mbzHch937Je88NTznYD5Nyb7nzuz4Gv3E-X7CTzqyTu_y55-z98eFt9lzMF08vs_t5YQnLXLimdAIq01prhFNTRZpKapREpQg7bUFU2kqldQVSYiNhBNpW2g5asqahc3Z9yB1i-Ny6lOtV2EY_VtaooSJJpVCjCw8uG0NK0XX1EMfH4leNUO9Xqv-sNDLiwKTR65cu_kr-F_oGrytnug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1907343625</pqid></control><display><type>article</type><title>On optimal group claims at voting in a stochastic environment</title><source>SpringerNature Journals</source><creator>Malyshev, V. A. ; Chebotarev, P. Yu</creator><creatorcontrib>Malyshev, V. A. ; Chebotarev, P. Yu</creatorcontrib><description>There is a paradox in the model of social dynamics determined by voting in a stochastic environment (the ViSE model) called “pit of losses.” It consists in the fact that a series of democratic decisions may systematically lead the society to the states unacceptable for all the voters. The paper examines how this paradox can be neutralized by the presence in society of a group that votes for its benefit and can regulate the threshold of its claims. We obtain and analyze analytical results characterizing the welfare of the whole society, the group, and the other participants as functions of the said claims threshold.</description><identifier>ISSN: 0005-1179</identifier><identifier>EISSN: 1608-3032</identifier><identifier>DOI: 10.1134/S0005117917060091</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Computer-Aided Engineering (CAD ; Control ; Data Analysis ; Decisions ; Dynamics ; Intellectual Control Systems ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Mechanical Engineering ; Mechatronics ; Optimization ; Probability theory ; Robotics ; Series (mathematics) ; Society ; Systems Theory ; Voters ; Voting</subject><ispartof>Automation and remote control, 2017-06, Vol.78 (6), p.1087-1100</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-eb6e207adcca2e58539363b5415531f9c0279c459970441b40b6edd4cf0d3cab3</citedby><cites>FETCH-LOGICAL-c316t-eb6e207adcca2e58539363b5415531f9c0279c459970441b40b6edd4cf0d3cab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0005117917060091$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0005117917060091$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Malyshev, V. A.</creatorcontrib><creatorcontrib>Chebotarev, P. Yu</creatorcontrib><title>On optimal group claims at voting in a stochastic environment</title><title>Automation and remote control</title><addtitle>Autom Remote Control</addtitle><description>There is a paradox in the model of social dynamics determined by voting in a stochastic environment (the ViSE model) called “pit of losses.” It consists in the fact that a series of democratic decisions may systematically lead the society to the states unacceptable for all the voters. The paper examines how this paradox can be neutralized by the presence in society of a group that votes for its benefit and can regulate the threshold of its claims. We obtain and analyze analytical results characterizing the welfare of the whole society, the group, and the other participants as functions of the said claims threshold.</description><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Data Analysis</subject><subject>Decisions</subject><subject>Dynamics</subject><subject>Intellectual Control Systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Optimization</subject><subject>Probability theory</subject><subject>Robotics</subject><subject>Series (mathematics)</subject><subject>Society</subject><subject>Systems Theory</subject><subject>Voters</subject><subject>Voting</subject><issn>0005-1179</issn><issn>1608-3032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWB8_wF3A9ei9uclMs3AhxRcUulDXQyaTqVPaZEzSgv_eKXUhiKu7OOc7h3sYu0K4QSR5-woACrHSWEEJoPGITbCEaUFA4phN9nKx10_ZWUorAEQQNGF3C8_DkPuNWfNlDNuB27XpN4mbzHch937Je88NTznYD5Nyb7nzuz4Gv3E-X7CTzqyTu_y55-z98eFt9lzMF08vs_t5YQnLXLimdAIq01prhFNTRZpKapREpQg7bUFU2kqldQVSYiNhBNpW2g5asqahc3Z9yB1i-Ny6lOtV2EY_VtaooSJJpVCjCw8uG0NK0XX1EMfH4leNUO9Xqv-sNDLiwKTR65cu_kr-F_oGrytnug</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Malyshev, V. A.</creator><creator>Chebotarev, P. Yu</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170601</creationdate><title>On optimal group claims at voting in a stochastic environment</title><author>Malyshev, V. A. ; Chebotarev, P. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-eb6e207adcca2e58539363b5415531f9c0279c459970441b40b6edd4cf0d3cab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Data Analysis</topic><topic>Decisions</topic><topic>Dynamics</topic><topic>Intellectual Control Systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Optimization</topic><topic>Probability theory</topic><topic>Robotics</topic><topic>Series (mathematics)</topic><topic>Society</topic><topic>Systems Theory</topic><topic>Voters</topic><topic>Voting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malyshev, V. A.</creatorcontrib><creatorcontrib>Chebotarev, P. Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Automation and remote control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malyshev, V. A.</au><au>Chebotarev, P. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On optimal group claims at voting in a stochastic environment</atitle><jtitle>Automation and remote control</jtitle><stitle>Autom Remote Control</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>78</volume><issue>6</issue><spage>1087</spage><epage>1100</epage><pages>1087-1100</pages><issn>0005-1179</issn><eissn>1608-3032</eissn><abstract>There is a paradox in the model of social dynamics determined by voting in a stochastic environment (the ViSE model) called “pit of losses.” It consists in the fact that a series of democratic decisions may systematically lead the society to the states unacceptable for all the voters. The paper examines how this paradox can be neutralized by the presence in society of a group that votes for its benefit and can regulate the threshold of its claims. We obtain and analyze analytical results characterizing the welfare of the whole society, the group, and the other participants as functions of the said claims threshold.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0005117917060091</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0005-1179
ispartof Automation and remote control, 2017-06, Vol.78 (6), p.1087-1100
issn 0005-1179
1608-3032
language eng
recordid cdi_proquest_journals_1907343625
source SpringerNature Journals
subjects CAE) and Design
Calculus of Variations and Optimal Control
Optimization
Computer-Aided Engineering (CAD
Control
Data Analysis
Decisions
Dynamics
Intellectual Control Systems
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Mechanical Engineering
Mechatronics
Optimization
Probability theory
Robotics
Series (mathematics)
Society
Systems Theory
Voters
Voting
title On optimal group claims at voting in a stochastic environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A53%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20optimal%20group%20claims%20at%20voting%20in%20a%20stochastic%20environment&rft.jtitle=Automation%20and%20remote%20control&rft.au=Malyshev,%20V.%20A.&rft.date=2017-06-01&rft.volume=78&rft.issue=6&rft.spage=1087&rft.epage=1100&rft.pages=1087-1100&rft.issn=0005-1179&rft.eissn=1608-3032&rft_id=info:doi/10.1134/S0005117917060091&rft_dat=%3Cproquest_cross%3E1907343625%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1907343625&rft_id=info:pmid/&rfr_iscdi=true