Wave-function frozen-density embedding: Approximate analytical nuclear ground-state gradients
We report the derivation of approximate analytical nuclear ground‐state uncoupled frozen density embedding (FDEu) gradients for the resolution of identity (RI) variant of the second‐order approximate coupled cluster singles and doubles (RICC2) as well as density functional theory (DFT), and an effic...
Gespeichert in:
Veröffentlicht in: | Journal of computational chemistry 2016-05, Vol.37 (12), p.1092-1101 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1101 |
---|---|
container_issue | 12 |
container_start_page | 1092 |
container_title | Journal of computational chemistry |
container_volume | 37 |
creator | Heuser, Johannes Höfener, Sebastian |
description | We report the derivation of approximate analytical nuclear ground‐state uncoupled frozen density embedding (FDEu) gradients for the resolution of identity (RI) variant of the second‐order approximate coupled cluster singles and doubles (RICC2) as well as density functional theory (DFT), and an efficient implementation thereof in the KOALA program. In order to guarantee a computationally efficient treatment, those gradient terms are neglected which would require the exchange of orbital information. This approach allows for geometry optimizations of single molecules surrounded by numerous molecules with fixed nuclei at RICC2‐in‐RICC2, RICC2‐in‐DFT, and DFT‐in‐DFT FDE level of theory using a dispersion correction, required due to the DFT‐based treatment of the interaction in FDE theory. Accuracy and applicability are assessed by the example of two case studies: (a) the Watson‐Crick pair adenine‐thymine, for which the optimized structures exhibit a maximum error of about 0.08 Å for our best scheme compared to supermolecular reference calculations, (b) carbon monoxide on a magnesium oxide surface model, for which the error amount up to 0.1 Å for our best scheme. Efficiency is demonstrated by successively including environment molecules and comparing to an optimized conventional supermolecular implementation, showing that the method is able to outperform conventional RICC2 schemes already with a rather small number of environment molecules, gaining significant speed up in computation time. © 2016 Wiley Periodicals, Inc.
We report analytical nuclear subsystem gradients for wave‐function‐based frozen‐density embedding (FDE), using density fitting and resolution of the identity methods. The new method allows for efficient geometry optimizations of single molecules surrounded by explicit atomistic surroundings, outperforming conventional RICC2 schemes already for small numbers of environment molecules. |
doi_str_mv | 10.1002/jcc.24301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1907313681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4036092181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3861-a10edb95f090cedd614307b5452e8bf5971bc1e15b9f526f0955c1a7c1cf4cd3</originalsourceid><addsrcrecordid>eNp9kEFv1DAQhS0EotvCgT-AInHi4HYmjh2HW1nK0qotl0rlgizHmayyZJ3FTqDLr8fbbXuD0xzme2_mPcbeIBwjQH6ycu44LwTgMzZDqBSvdPntOZsBVjnXSuIBO4xxBQBCquIlO8iVhkIgzNj3W_uLeDt5N3aDz9ow_CHPG_KxG7cZrWtqms4vP2Snm00Y7rq1HSmz3vbbsXO2z_zkerIhW4Zh8g2P426_DLbpyI_xFXvR2j7S64d5xG4-n93Mv_DLr4vz-ekld0Ir5BaBmrqSLVTg0kGFKUxZy0LmpOtWViXWDgllXbUyVwmT0qEtHbq2cI04Yu_2tunFnxPF0ayGKaQno8EKSoFCafwvVeqiUFrLHfV-T7kwxBioNZuQUoetQTC7tk1q29y3ndi3D45TvabmiXysNwEne-B319P2307mYj5_tOR7RRdHuntS2PDDqFKU0txeLwyIhfx4tbgwn8RfJg-YNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1784468851</pqid></control><display><type>article</type><title>Wave-function frozen-density embedding: Approximate analytical nuclear ground-state gradients</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Heuser, Johannes ; Höfener, Sebastian</creator><creatorcontrib>Heuser, Johannes ; Höfener, Sebastian</creatorcontrib><description>We report the derivation of approximate analytical nuclear ground‐state uncoupled frozen density embedding (FDEu) gradients for the resolution of identity (RI) variant of the second‐order approximate coupled cluster singles and doubles (RICC2) as well as density functional theory (DFT), and an efficient implementation thereof in the KOALA program. In order to guarantee a computationally efficient treatment, those gradient terms are neglected which would require the exchange of orbital information. This approach allows for geometry optimizations of single molecules surrounded by numerous molecules with fixed nuclei at RICC2‐in‐RICC2, RICC2‐in‐DFT, and DFT‐in‐DFT FDE level of theory using a dispersion correction, required due to the DFT‐based treatment of the interaction in FDE theory. Accuracy and applicability are assessed by the example of two case studies: (a) the Watson‐Crick pair adenine‐thymine, for which the optimized structures exhibit a maximum error of about 0.08 Å for our best scheme compared to supermolecular reference calculations, (b) carbon monoxide on a magnesium oxide surface model, for which the error amount up to 0.1 Å for our best scheme. Efficiency is demonstrated by successively including environment molecules and comparing to an optimized conventional supermolecular implementation, showing that the method is able to outperform conventional RICC2 schemes already with a rather small number of environment molecules, gaining significant speed up in computation time. © 2016 Wiley Periodicals, Inc.
We report analytical nuclear subsystem gradients for wave‐function‐based frozen‐density embedding (FDE), using density fitting and resolution of the identity methods. The new method allows for efficient geometry optimizations of single molecules surrounded by explicit atomistic surroundings, outperforming conventional RICC2 schemes already for small numbers of environment molecules.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.24301</identifier><identifier>PMID: 26804310</identifier><identifier>CODEN: JCCHDD</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>ab initio program ; Carbon ; Carbon monoxide ; Case studies ; Chemistry ; Clusters ; Computing time ; coupled cluster ; Coupling (molecular) ; Density ; density fitting ; Density functional theory ; Derivation ; Dispersion ; Environments ; Exchanging ; Frozen ground ; frozen-density embedding ; Magnesium ; Magnesium oxide ; Mathematical analysis ; Mathematical models ; Molecules ; Nuclei ; Permissible error ; properties ; Thymine ; Wave dispersion</subject><ispartof>Journal of computational chemistry, 2016-05, Vol.37 (12), p.1092-1101</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><rights>Copyright Wiley Subscription Services, Inc. May 5, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3861-a10edb95f090cedd614307b5452e8bf5971bc1e15b9f526f0955c1a7c1cf4cd3</citedby><cites>FETCH-LOGICAL-c3861-a10edb95f090cedd614307b5452e8bf5971bc1e15b9f526f0955c1a7c1cf4cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.24301$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.24301$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26804310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heuser, Johannes</creatorcontrib><creatorcontrib>Höfener, Sebastian</creatorcontrib><title>Wave-function frozen-density embedding: Approximate analytical nuclear ground-state gradients</title><title>Journal of computational chemistry</title><addtitle>J. Comput. Chem</addtitle><description>We report the derivation of approximate analytical nuclear ground‐state uncoupled frozen density embedding (FDEu) gradients for the resolution of identity (RI) variant of the second‐order approximate coupled cluster singles and doubles (RICC2) as well as density functional theory (DFT), and an efficient implementation thereof in the KOALA program. In order to guarantee a computationally efficient treatment, those gradient terms are neglected which would require the exchange of orbital information. This approach allows for geometry optimizations of single molecules surrounded by numerous molecules with fixed nuclei at RICC2‐in‐RICC2, RICC2‐in‐DFT, and DFT‐in‐DFT FDE level of theory using a dispersion correction, required due to the DFT‐based treatment of the interaction in FDE theory. Accuracy and applicability are assessed by the example of two case studies: (a) the Watson‐Crick pair adenine‐thymine, for which the optimized structures exhibit a maximum error of about 0.08 Å for our best scheme compared to supermolecular reference calculations, (b) carbon monoxide on a magnesium oxide surface model, for which the error amount up to 0.1 Å for our best scheme. Efficiency is demonstrated by successively including environment molecules and comparing to an optimized conventional supermolecular implementation, showing that the method is able to outperform conventional RICC2 schemes already with a rather small number of environment molecules, gaining significant speed up in computation time. © 2016 Wiley Periodicals, Inc.
We report analytical nuclear subsystem gradients for wave‐function‐based frozen‐density embedding (FDE), using density fitting and resolution of the identity methods. The new method allows for efficient geometry optimizations of single molecules surrounded by explicit atomistic surroundings, outperforming conventional RICC2 schemes already for small numbers of environment molecules.</description><subject>ab initio program</subject><subject>Carbon</subject><subject>Carbon monoxide</subject><subject>Case studies</subject><subject>Chemistry</subject><subject>Clusters</subject><subject>Computing time</subject><subject>coupled cluster</subject><subject>Coupling (molecular)</subject><subject>Density</subject><subject>density fitting</subject><subject>Density functional theory</subject><subject>Derivation</subject><subject>Dispersion</subject><subject>Environments</subject><subject>Exchanging</subject><subject>Frozen ground</subject><subject>frozen-density embedding</subject><subject>Magnesium</subject><subject>Magnesium oxide</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Molecules</subject><subject>Nuclei</subject><subject>Permissible error</subject><subject>properties</subject><subject>Thymine</subject><subject>Wave dispersion</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEFv1DAQhS0EotvCgT-AInHi4HYmjh2HW1nK0qotl0rlgizHmayyZJ3FTqDLr8fbbXuD0xzme2_mPcbeIBwjQH6ycu44LwTgMzZDqBSvdPntOZsBVjnXSuIBO4xxBQBCquIlO8iVhkIgzNj3W_uLeDt5N3aDz9ow_CHPG_KxG7cZrWtqms4vP2Snm00Y7rq1HSmz3vbbsXO2z_zkerIhW4Zh8g2P426_DLbpyI_xFXvR2j7S64d5xG4-n93Mv_DLr4vz-ekld0Ir5BaBmrqSLVTg0kGFKUxZy0LmpOtWViXWDgllXbUyVwmT0qEtHbq2cI04Yu_2tunFnxPF0ayGKaQno8EKSoFCafwvVeqiUFrLHfV-T7kwxBioNZuQUoetQTC7tk1q29y3ndi3D45TvabmiXysNwEne-B319P2307mYj5_tOR7RRdHuntS2PDDqFKU0txeLwyIhfx4tbgwn8RfJg-YNQ</recordid><startdate>20160505</startdate><enddate>20160505</enddate><creator>Heuser, Johannes</creator><creator>Höfener, Sebastian</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20160505</creationdate><title>Wave-function frozen-density embedding: Approximate analytical nuclear ground-state gradients</title><author>Heuser, Johannes ; Höfener, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3861-a10edb95f090cedd614307b5452e8bf5971bc1e15b9f526f0955c1a7c1cf4cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ab initio program</topic><topic>Carbon</topic><topic>Carbon monoxide</topic><topic>Case studies</topic><topic>Chemistry</topic><topic>Clusters</topic><topic>Computing time</topic><topic>coupled cluster</topic><topic>Coupling (molecular)</topic><topic>Density</topic><topic>density fitting</topic><topic>Density functional theory</topic><topic>Derivation</topic><topic>Dispersion</topic><topic>Environments</topic><topic>Exchanging</topic><topic>Frozen ground</topic><topic>frozen-density embedding</topic><topic>Magnesium</topic><topic>Magnesium oxide</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Molecules</topic><topic>Nuclei</topic><topic>Permissible error</topic><topic>properties</topic><topic>Thymine</topic><topic>Wave dispersion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heuser, Johannes</creatorcontrib><creatorcontrib>Höfener, Sebastian</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heuser, Johannes</au><au>Höfener, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wave-function frozen-density embedding: Approximate analytical nuclear ground-state gradients</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J. Comput. Chem</addtitle><date>2016-05-05</date><risdate>2016</risdate><volume>37</volume><issue>12</issue><spage>1092</spage><epage>1101</epage><pages>1092-1101</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><coden>JCCHDD</coden><abstract>We report the derivation of approximate analytical nuclear ground‐state uncoupled frozen density embedding (FDEu) gradients for the resolution of identity (RI) variant of the second‐order approximate coupled cluster singles and doubles (RICC2) as well as density functional theory (DFT), and an efficient implementation thereof in the KOALA program. In order to guarantee a computationally efficient treatment, those gradient terms are neglected which would require the exchange of orbital information. This approach allows for geometry optimizations of single molecules surrounded by numerous molecules with fixed nuclei at RICC2‐in‐RICC2, RICC2‐in‐DFT, and DFT‐in‐DFT FDE level of theory using a dispersion correction, required due to the DFT‐based treatment of the interaction in FDE theory. Accuracy and applicability are assessed by the example of two case studies: (a) the Watson‐Crick pair adenine‐thymine, for which the optimized structures exhibit a maximum error of about 0.08 Å for our best scheme compared to supermolecular reference calculations, (b) carbon monoxide on a magnesium oxide surface model, for which the error amount up to 0.1 Å for our best scheme. Efficiency is demonstrated by successively including environment molecules and comparing to an optimized conventional supermolecular implementation, showing that the method is able to outperform conventional RICC2 schemes already with a rather small number of environment molecules, gaining significant speed up in computation time. © 2016 Wiley Periodicals, Inc.
We report analytical nuclear subsystem gradients for wave‐function‐based frozen‐density embedding (FDE), using density fitting and resolution of the identity methods. The new method allows for efficient geometry optimizations of single molecules surrounded by explicit atomistic surroundings, outperforming conventional RICC2 schemes already for small numbers of environment molecules.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26804310</pmid><doi>10.1002/jcc.24301</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0192-8651 |
ispartof | Journal of computational chemistry, 2016-05, Vol.37 (12), p.1092-1101 |
issn | 0192-8651 1096-987X |
language | eng |
recordid | cdi_proquest_journals_1907313681 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | ab initio program Carbon Carbon monoxide Case studies Chemistry Clusters Computing time coupled cluster Coupling (molecular) Density density fitting Density functional theory Derivation Dispersion Environments Exchanging Frozen ground frozen-density embedding Magnesium Magnesium oxide Mathematical analysis Mathematical models Molecules Nuclei Permissible error properties Thymine Wave dispersion |
title | Wave-function frozen-density embedding: Approximate analytical nuclear ground-state gradients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wave-function%20frozen-density%20embedding:%20Approximate%20analytical%20nuclear%20ground-state%20gradients&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Heuser,%20Johannes&rft.date=2016-05-05&rft.volume=37&rft.issue=12&rft.spage=1092&rft.epage=1101&rft.pages=1092-1101&rft.issn=0192-8651&rft.eissn=1096-987X&rft.coden=JCCHDD&rft_id=info:doi/10.1002/jcc.24301&rft_dat=%3Cproquest_cross%3E4036092181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1784468851&rft_id=info:pmid/26804310&rfr_iscdi=true |