Quantum‐chemical perspective of nanoscale Raman spectroscopy with the three‐dimensional phonon confinement model
Raman spectroscopy of crystalline/molecular systems is well grounded with quantum‐chemical calculations and group theory, making it a unique tool for material characterization. For the ‘intermediate’ case of nanometer‐scale systems, however, the application of Raman spectroscopy is limited by the la...
Gespeichert in:
Veröffentlicht in: | Journal of Raman spectroscopy 2017-06, Vol.48 (6), p.842-846 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 846 |
---|---|
container_issue | 6 |
container_start_page | 842 |
container_title | Journal of Raman spectroscopy |
container_volume | 48 |
creator | Korepanov, Vitaly I. Hamaguchi, Hiro‐o |
description | Raman spectroscopy of crystalline/molecular systems is well grounded with quantum‐chemical calculations and group theory, making it a unique tool for material characterization. For the ‘intermediate’ case of nanometer‐scale systems, however, the application of Raman spectroscopy is limited by the lack of such theoretical bases. Here, we couple a scaled quantum‐chemical calculation with the phonon confinement model to construct a universal and physically consistent basis for nanoscale Raman spectroscopy. Unlike the commonly assumed one‐dimensional approximation of phonon dispersion, we take into account the confinement along all the three dimensions of the k‐space. We apply it to diamond nanoparticles of sub‐50‐nm size, a system with pronounced anisotropy of dispersion for which consideration of three‐dimensional dispersion is a requisite. The model excellently reproduces size‐sensitive Raman spectral features, including the peak position, bandwidth, and asymmetry of the sp3 C–C stretch Raman line. This fundamental approach can be easily generalized to contribute the future development of quantitative nanoscale Raman spectroscopy. Copyright © 2017 John Wiley & Sons, Ltd.
We introduce a general quantitative approach to interpret the Raman spectra of nanoscale materials. We combine a quantum‐chemical calculation with the 3D phonon confinement model to successfully reproduce the size‐dependent Raman spectra of nano‐diamonds. |
doi_str_mv | 10.1002/jrs.5132 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1907235492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1907235492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3302-c68d2c1528969d93df4d057cd83e852c321f1beeb77a800e5cff3849bd90f8563</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOI6CjxBw46Zjfpq2WcrgLwPiqOvSSW9ohjapSeswOx_BZ_RJzDhuXVwunPtxuOcgdE7JjBLCrtY-zATl7ABNKJF5kgohDtGE8DxPSFpkx-gkhDUhRMqMTtDwPFZ2GLvvzy_VQGdU1eIefOhBDeYDsNPYVtaFqANeVl1l8e_NR8n1W7wxQ4OHBuJ4gOhSmw5sMM7ujBpnncXKWW0sRH3AnauhPUVHumoDnP3tKXq7vXmd3yeLp7uH-fUiUZwTlqisqJmighUyk7XktU5rInJVFxwKwRRnVNMVwCrPq4IQEEprXqRyVUuiC5HxKbrY-_bevY8QhnLtRh8_CyWVJGdcpJJF6nJPqRgqeNBl701X-W1JSbnrtIydlrtOI5rs0Y1pYfsvVz4uX375H7P8fIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1907235492</pqid></control><display><type>article</type><title>Quantum‐chemical perspective of nanoscale Raman spectroscopy with the three‐dimensional phonon confinement model</title><source>Access via Wiley Online Library</source><creator>Korepanov, Vitaly I. ; Hamaguchi, Hiro‐o</creator><creatorcontrib>Korepanov, Vitaly I. ; Hamaguchi, Hiro‐o</creatorcontrib><description>Raman spectroscopy of crystalline/molecular systems is well grounded with quantum‐chemical calculations and group theory, making it a unique tool for material characterization. For the ‘intermediate’ case of nanometer‐scale systems, however, the application of Raman spectroscopy is limited by the lack of such theoretical bases. Here, we couple a scaled quantum‐chemical calculation with the phonon confinement model to construct a universal and physically consistent basis for nanoscale Raman spectroscopy. Unlike the commonly assumed one‐dimensional approximation of phonon dispersion, we take into account the confinement along all the three dimensions of the k‐space. We apply it to diamond nanoparticles of sub‐50‐nm size, a system with pronounced anisotropy of dispersion for which consideration of three‐dimensional dispersion is a requisite. The model excellently reproduces size‐sensitive Raman spectral features, including the peak position, bandwidth, and asymmetry of the sp3 C–C stretch Raman line. This fundamental approach can be easily generalized to contribute the future development of quantitative nanoscale Raman spectroscopy. Copyright © 2017 John Wiley & Sons, Ltd.
We introduce a general quantitative approach to interpret the Raman spectra of nanoscale materials. We combine a quantum‐chemical calculation with the 3D phonon confinement model to successfully reproduce the size‐dependent Raman spectra of nano‐diamonds.</description><identifier>ISSN: 0377-0486</identifier><identifier>EISSN: 1097-4555</identifier><identifier>DOI: 10.1002/jrs.5132</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Anisotropy ; Approximation ; Asymmetry ; Bandwidths ; Confinement ; Coupling (molecular) ; Crystal structure ; Diamonds ; Dispersion ; Mathematical analysis ; Mathematical models ; Nanoparticles ; nanoscale materials ; phonon confinement ; Quantum chemistry ; Raman spectroscopy ; Spectra ; Spectroscopy ; Spectrum analysis ; Three dimensional models</subject><ispartof>Journal of Raman spectroscopy, 2017-06, Vol.48 (6), p.842-846</ispartof><rights>Copyright © 2017 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3302-c68d2c1528969d93df4d057cd83e852c321f1beeb77a800e5cff3849bd90f8563</citedby><cites>FETCH-LOGICAL-c3302-c68d2c1528969d93df4d057cd83e852c321f1beeb77a800e5cff3849bd90f8563</cites><orcidid>0000-0001-5761-137X ; 0000-0002-4320-0921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjrs.5132$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjrs.5132$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Korepanov, Vitaly I.</creatorcontrib><creatorcontrib>Hamaguchi, Hiro‐o</creatorcontrib><title>Quantum‐chemical perspective of nanoscale Raman spectroscopy with the three‐dimensional phonon confinement model</title><title>Journal of Raman spectroscopy</title><description>Raman spectroscopy of crystalline/molecular systems is well grounded with quantum‐chemical calculations and group theory, making it a unique tool for material characterization. For the ‘intermediate’ case of nanometer‐scale systems, however, the application of Raman spectroscopy is limited by the lack of such theoretical bases. Here, we couple a scaled quantum‐chemical calculation with the phonon confinement model to construct a universal and physically consistent basis for nanoscale Raman spectroscopy. Unlike the commonly assumed one‐dimensional approximation of phonon dispersion, we take into account the confinement along all the three dimensions of the k‐space. We apply it to diamond nanoparticles of sub‐50‐nm size, a system with pronounced anisotropy of dispersion for which consideration of three‐dimensional dispersion is a requisite. The model excellently reproduces size‐sensitive Raman spectral features, including the peak position, bandwidth, and asymmetry of the sp3 C–C stretch Raman line. This fundamental approach can be easily generalized to contribute the future development of quantitative nanoscale Raman spectroscopy. Copyright © 2017 John Wiley & Sons, Ltd.
We introduce a general quantitative approach to interpret the Raman spectra of nanoscale materials. We combine a quantum‐chemical calculation with the 3D phonon confinement model to successfully reproduce the size‐dependent Raman spectra of nano‐diamonds.</description><subject>Anisotropy</subject><subject>Approximation</subject><subject>Asymmetry</subject><subject>Bandwidths</subject><subject>Confinement</subject><subject>Coupling (molecular)</subject><subject>Crystal structure</subject><subject>Diamonds</subject><subject>Dispersion</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nanoparticles</subject><subject>nanoscale materials</subject><subject>phonon confinement</subject><subject>Quantum chemistry</subject><subject>Raman spectroscopy</subject><subject>Spectra</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Three dimensional models</subject><issn>0377-0486</issn><issn>1097-4555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAUhYMoOI6CjxBw46Zjfpq2WcrgLwPiqOvSSW9ohjapSeswOx_BZ_RJzDhuXVwunPtxuOcgdE7JjBLCrtY-zATl7ABNKJF5kgohDtGE8DxPSFpkx-gkhDUhRMqMTtDwPFZ2GLvvzy_VQGdU1eIefOhBDeYDsNPYVtaFqANeVl1l8e_NR8n1W7wxQ4OHBuJ4gOhSmw5sMM7ujBpnncXKWW0sRH3AnauhPUVHumoDnP3tKXq7vXmd3yeLp7uH-fUiUZwTlqisqJmighUyk7XktU5rInJVFxwKwRRnVNMVwCrPq4IQEEprXqRyVUuiC5HxKbrY-_bevY8QhnLtRh8_CyWVJGdcpJJF6nJPqRgqeNBl701X-W1JSbnrtIydlrtOI5rs0Y1pYfsvVz4uX375H7P8fIw</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Korepanov, Vitaly I.</creator><creator>Hamaguchi, Hiro‐o</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-5761-137X</orcidid><orcidid>https://orcid.org/0000-0002-4320-0921</orcidid></search><sort><creationdate>201706</creationdate><title>Quantum‐chemical perspective of nanoscale Raman spectroscopy with the three‐dimensional phonon confinement model</title><author>Korepanov, Vitaly I. ; Hamaguchi, Hiro‐o</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3302-c68d2c1528969d93df4d057cd83e852c321f1beeb77a800e5cff3849bd90f8563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anisotropy</topic><topic>Approximation</topic><topic>Asymmetry</topic><topic>Bandwidths</topic><topic>Confinement</topic><topic>Coupling (molecular)</topic><topic>Crystal structure</topic><topic>Diamonds</topic><topic>Dispersion</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nanoparticles</topic><topic>nanoscale materials</topic><topic>phonon confinement</topic><topic>Quantum chemistry</topic><topic>Raman spectroscopy</topic><topic>Spectra</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korepanov, Vitaly I.</creatorcontrib><creatorcontrib>Hamaguchi, Hiro‐o</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of Raman spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korepanov, Vitaly I.</au><au>Hamaguchi, Hiro‐o</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum‐chemical perspective of nanoscale Raman spectroscopy with the three‐dimensional phonon confinement model</atitle><jtitle>Journal of Raman spectroscopy</jtitle><date>2017-06</date><risdate>2017</risdate><volume>48</volume><issue>6</issue><spage>842</spage><epage>846</epage><pages>842-846</pages><issn>0377-0486</issn><eissn>1097-4555</eissn><abstract>Raman spectroscopy of crystalline/molecular systems is well grounded with quantum‐chemical calculations and group theory, making it a unique tool for material characterization. For the ‘intermediate’ case of nanometer‐scale systems, however, the application of Raman spectroscopy is limited by the lack of such theoretical bases. Here, we couple a scaled quantum‐chemical calculation with the phonon confinement model to construct a universal and physically consistent basis for nanoscale Raman spectroscopy. Unlike the commonly assumed one‐dimensional approximation of phonon dispersion, we take into account the confinement along all the three dimensions of the k‐space. We apply it to diamond nanoparticles of sub‐50‐nm size, a system with pronounced anisotropy of dispersion for which consideration of three‐dimensional dispersion is a requisite. The model excellently reproduces size‐sensitive Raman spectral features, including the peak position, bandwidth, and asymmetry of the sp3 C–C stretch Raman line. This fundamental approach can be easily generalized to contribute the future development of quantitative nanoscale Raman spectroscopy. Copyright © 2017 John Wiley & Sons, Ltd.
We introduce a general quantitative approach to interpret the Raman spectra of nanoscale materials. We combine a quantum‐chemical calculation with the 3D phonon confinement model to successfully reproduce the size‐dependent Raman spectra of nano‐diamonds.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jrs.5132</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5761-137X</orcidid><orcidid>https://orcid.org/0000-0002-4320-0921</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0486 |
ispartof | Journal of Raman spectroscopy, 2017-06, Vol.48 (6), p.842-846 |
issn | 0377-0486 1097-4555 |
language | eng |
recordid | cdi_proquest_journals_1907235492 |
source | Access via Wiley Online Library |
subjects | Anisotropy Approximation Asymmetry Bandwidths Confinement Coupling (molecular) Crystal structure Diamonds Dispersion Mathematical analysis Mathematical models Nanoparticles nanoscale materials phonon confinement Quantum chemistry Raman spectroscopy Spectra Spectroscopy Spectrum analysis Three dimensional models |
title | Quantum‐chemical perspective of nanoscale Raman spectroscopy with the three‐dimensional phonon confinement model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%E2%80%90chemical%20perspective%20of%20nanoscale%20Raman%20spectroscopy%20with%20the%20three%E2%80%90dimensional%20phonon%20confinement%20model&rft.jtitle=Journal%20of%20Raman%20spectroscopy&rft.au=Korepanov,%20Vitaly%20I.&rft.date=2017-06&rft.volume=48&rft.issue=6&rft.spage=842&rft.epage=846&rft.pages=842-846&rft.issn=0377-0486&rft.eissn=1097-4555&rft_id=info:doi/10.1002/jrs.5132&rft_dat=%3Cproquest_cross%3E1907235492%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1907235492&rft_id=info:pmid/&rfr_iscdi=true |