Global optimization of non-convex piecewise linear regression splines
Multivariate adaptive regression spline (MARS) is a statistical modeling method used to represent a complex system. More recently, a version of MARS was modified to be piecewise linear. This paper presents a mixed integer linear program, called MARSOPT, that optimizes a non-convex piecewise linear M...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2017-07, Vol.68 (3), p.563-586 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 586 |
---|---|
container_issue | 3 |
container_start_page | 563 |
container_title | Journal of global optimization |
container_volume | 68 |
creator | Martinez, Nadia Anahideh, Hadis Rosenberger, Jay M. Martinez, Diana Chen, Victoria C. P. Wang, Bo Ping |
description | Multivariate adaptive regression spline (MARS) is a statistical modeling method used to represent a complex system. More recently, a version of MARS was modified to be piecewise linear. This paper presents a mixed integer linear program, called MARSOPT, that optimizes a non-convex piecewise linear MARS model subject to constraints that include both linear regression models and piecewise linear MARS models. MARSOPT is customized for an automotive crash safety system design problem for a major US automaker and solved using branch and bound. The solutions from MARSOPT are compared with those from customized genetic algorithms. |
doi_str_mv | 10.1007/s10898-016-0494-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1907233555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718414371</galeid><sourcerecordid>A718414371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-b159f40b799e1481476091b28abe3e279f9e9be377166a2c6515d7d6a80c2b423</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaLg-vEDvBU8Z51Jm6Y5LqKrIHjRc0i70yVLt6lJ169fb0o9eJE5zPB4b97MY-wKYYkA6iYiVLrigCWHQhdcHrEFSpVzobE8ZgvQQnIJgKfsLMYdAOhKigW7W3e-tl3mh9Ht3bcdne8z32a973nj-3f6zAZHDX24SFnnerIhC7QNFOPEjMOExQt20tou0uVvP2ev93cvtw_86Xn9eLt64k2uq5HXKHVbQK20JiwqLFQJGmtR2ZpyEkq3mnQalcKytKIpJcqN2pS2gkbUhcjP2fW8dwj-7UBxNDt_CH2yNKhBiTyXUibWcmZtbUfG9a0fg21SbWjv0lPUuoSvFFYFFrnCJMBZ0AQfY6DWDMHtbfgyCGaK18zxmhSvmeI1k4mYNTFx-y2FP6f8K_oBeUh8QQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1907233555</pqid></control><display><type>article</type><title>Global optimization of non-convex piecewise linear regression splines</title><source>Springer Nature - Complete Springer Journals</source><creator>Martinez, Nadia ; Anahideh, Hadis ; Rosenberger, Jay M. ; Martinez, Diana ; Chen, Victoria C. P. ; Wang, Bo Ping</creator><creatorcontrib>Martinez, Nadia ; Anahideh, Hadis ; Rosenberger, Jay M. ; Martinez, Diana ; Chen, Victoria C. P. ; Wang, Bo Ping</creatorcontrib><description>Multivariate adaptive regression spline (MARS) is a statistical modeling method used to represent a complex system. More recently, a version of MARS was modified to be piecewise linear. This paper presents a mixed integer linear program, called MARSOPT, that optimizes a non-convex piecewise linear MARS model subject to constraints that include both linear regression models and piecewise linear MARS models. MARSOPT is customized for an automotive crash safety system design problem for a major US automaker and solved using branch and bound. The solutions from MARSOPT are compared with those from customized genetic algorithms.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-016-0494-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Science ; Constraint modelling ; Customization ; Design engineering ; Genetic algorithms ; Global optimization ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Mixed integer ; Operations Research/Decision Theory ; Optimization ; Real Functions ; Regression ; Regression analysis ; Safety ; Splines</subject><ispartof>Journal of global optimization, 2017-07, Vol.68 (3), p.563-586</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Journal of Global Optimization is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-b159f40b799e1481476091b28abe3e279f9e9be377166a2c6515d7d6a80c2b423</citedby><cites>FETCH-LOGICAL-c398t-b159f40b799e1481476091b28abe3e279f9e9be377166a2c6515d7d6a80c2b423</cites><orcidid>0000-0003-1935-7571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-016-0494-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-016-0494-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Martinez, Nadia</creatorcontrib><creatorcontrib>Anahideh, Hadis</creatorcontrib><creatorcontrib>Rosenberger, Jay M.</creatorcontrib><creatorcontrib>Martinez, Diana</creatorcontrib><creatorcontrib>Chen, Victoria C. P.</creatorcontrib><creatorcontrib>Wang, Bo Ping</creatorcontrib><title>Global optimization of non-convex piecewise linear regression splines</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>Multivariate adaptive regression spline (MARS) is a statistical modeling method used to represent a complex system. More recently, a version of MARS was modified to be piecewise linear. This paper presents a mixed integer linear program, called MARSOPT, that optimizes a non-convex piecewise linear MARS model subject to constraints that include both linear regression models and piecewise linear MARS models. MARSOPT is customized for an automotive crash safety system design problem for a major US automaker and solved using branch and bound. The solutions from MARSOPT are compared with those from customized genetic algorithms.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Constraint modelling</subject><subject>Customization</subject><subject>Design engineering</subject><subject>Genetic algorithms</subject><subject>Global optimization</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mixed integer</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Real Functions</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Safety</subject><subject>Splines</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UE1LxDAQDaLg-vEDvBU8Z51Jm6Y5LqKrIHjRc0i70yVLt6lJ169fb0o9eJE5zPB4b97MY-wKYYkA6iYiVLrigCWHQhdcHrEFSpVzobE8ZgvQQnIJgKfsLMYdAOhKigW7W3e-tl3mh9Ht3bcdne8z32a973nj-3f6zAZHDX24SFnnerIhC7QNFOPEjMOExQt20tou0uVvP2ev93cvtw_86Xn9eLt64k2uq5HXKHVbQK20JiwqLFQJGmtR2ZpyEkq3mnQalcKytKIpJcqN2pS2gkbUhcjP2fW8dwj-7UBxNDt_CH2yNKhBiTyXUibWcmZtbUfG9a0fg21SbWjv0lPUuoSvFFYFFrnCJMBZ0AQfY6DWDMHtbfgyCGaK18zxmhSvmeI1k4mYNTFx-y2FP6f8K_oBeUh8QQ</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Martinez, Nadia</creator><creator>Anahideh, Hadis</creator><creator>Rosenberger, Jay M.</creator><creator>Martinez, Diana</creator><creator>Chen, Victoria C. P.</creator><creator>Wang, Bo Ping</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1935-7571</orcidid></search><sort><creationdate>20170701</creationdate><title>Global optimization of non-convex piecewise linear regression splines</title><author>Martinez, Nadia ; Anahideh, Hadis ; Rosenberger, Jay M. ; Martinez, Diana ; Chen, Victoria C. P. ; Wang, Bo Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-b159f40b799e1481476091b28abe3e279f9e9be377166a2c6515d7d6a80c2b423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Constraint modelling</topic><topic>Customization</topic><topic>Design engineering</topic><topic>Genetic algorithms</topic><topic>Global optimization</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mixed integer</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Real Functions</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Safety</topic><topic>Splines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinez, Nadia</creatorcontrib><creatorcontrib>Anahideh, Hadis</creatorcontrib><creatorcontrib>Rosenberger, Jay M.</creatorcontrib><creatorcontrib>Martinez, Diana</creatorcontrib><creatorcontrib>Chen, Victoria C. P.</creatorcontrib><creatorcontrib>Wang, Bo Ping</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinez, Nadia</au><au>Anahideh, Hadis</au><au>Rosenberger, Jay M.</au><au>Martinez, Diana</au><au>Chen, Victoria C. P.</au><au>Wang, Bo Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global optimization of non-convex piecewise linear regression splines</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>68</volume><issue>3</issue><spage>563</spage><epage>586</epage><pages>563-586</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>Multivariate adaptive regression spline (MARS) is a statistical modeling method used to represent a complex system. More recently, a version of MARS was modified to be piecewise linear. This paper presents a mixed integer linear program, called MARSOPT, that optimizes a non-convex piecewise linear MARS model subject to constraints that include both linear regression models and piecewise linear MARS models. MARSOPT is customized for an automotive crash safety system design problem for a major US automaker and solved using branch and bound. The solutions from MARSOPT are compared with those from customized genetic algorithms.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-016-0494-5</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1935-7571</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5001 |
ispartof | Journal of global optimization, 2017-07, Vol.68 (3), p.563-586 |
issn | 0925-5001 1573-2916 |
language | eng |
recordid | cdi_proquest_journals_1907233555 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Computer Science Constraint modelling Customization Design engineering Genetic algorithms Global optimization Mathematical models Mathematics Mathematics and Statistics Mixed integer Operations Research/Decision Theory Optimization Real Functions Regression Regression analysis Safety Splines |
title | Global optimization of non-convex piecewise linear regression splines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A08%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20optimization%20of%20non-convex%20piecewise%20linear%20regression%20splines&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Martinez,%20Nadia&rft.date=2017-07-01&rft.volume=68&rft.issue=3&rft.spage=563&rft.epage=586&rft.pages=563-586&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-016-0494-5&rft_dat=%3Cgale_proqu%3EA718414371%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1907233555&rft_id=info:pmid/&rft_galeid=A718414371&rfr_iscdi=true |