Global optimization of non-convex piecewise linear regression splines

Multivariate adaptive regression spline (MARS) is a statistical modeling method used to represent a complex system. More recently, a version of MARS was modified to be piecewise linear. This paper presents a mixed integer linear program, called MARSOPT, that optimizes a non-convex piecewise linear M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2017-07, Vol.68 (3), p.563-586
Hauptverfasser: Martinez, Nadia, Anahideh, Hadis, Rosenberger, Jay M., Martinez, Diana, Chen, Victoria C. P., Wang, Bo Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 586
container_issue 3
container_start_page 563
container_title Journal of global optimization
container_volume 68
creator Martinez, Nadia
Anahideh, Hadis
Rosenberger, Jay M.
Martinez, Diana
Chen, Victoria C. P.
Wang, Bo Ping
description Multivariate adaptive regression spline (MARS) is a statistical modeling method used to represent a complex system. More recently, a version of MARS was modified to be piecewise linear. This paper presents a mixed integer linear program, called MARSOPT, that optimizes a non-convex piecewise linear MARS model subject to constraints that include both linear regression models and piecewise linear MARS models. MARSOPT is customized for an automotive crash safety system design problem for a major US automaker and solved using branch and bound. The solutions from MARSOPT are compared with those from customized genetic algorithms.
doi_str_mv 10.1007/s10898-016-0494-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1907233555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718414371</galeid><sourcerecordid>A718414371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-b159f40b799e1481476091b28abe3e279f9e9be377166a2c6515d7d6a80c2b423</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaLg-vEDvBU8Z51Jm6Y5LqKrIHjRc0i70yVLt6lJ169fb0o9eJE5zPB4b97MY-wKYYkA6iYiVLrigCWHQhdcHrEFSpVzobE8ZgvQQnIJgKfsLMYdAOhKigW7W3e-tl3mh9Ht3bcdne8z32a973nj-3f6zAZHDX24SFnnerIhC7QNFOPEjMOExQt20tou0uVvP2ev93cvtw_86Xn9eLt64k2uq5HXKHVbQK20JiwqLFQJGmtR2ZpyEkq3mnQalcKytKIpJcqN2pS2gkbUhcjP2fW8dwj-7UBxNDt_CH2yNKhBiTyXUibWcmZtbUfG9a0fg21SbWjv0lPUuoSvFFYFFrnCJMBZ0AQfY6DWDMHtbfgyCGaK18zxmhSvmeI1k4mYNTFx-y2FP6f8K_oBeUh8QQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1907233555</pqid></control><display><type>article</type><title>Global optimization of non-convex piecewise linear regression splines</title><source>Springer Nature - Complete Springer Journals</source><creator>Martinez, Nadia ; Anahideh, Hadis ; Rosenberger, Jay M. ; Martinez, Diana ; Chen, Victoria C. P. ; Wang, Bo Ping</creator><creatorcontrib>Martinez, Nadia ; Anahideh, Hadis ; Rosenberger, Jay M. ; Martinez, Diana ; Chen, Victoria C. P. ; Wang, Bo Ping</creatorcontrib><description>Multivariate adaptive regression spline (MARS) is a statistical modeling method used to represent a complex system. More recently, a version of MARS was modified to be piecewise linear. This paper presents a mixed integer linear program, called MARSOPT, that optimizes a non-convex piecewise linear MARS model subject to constraints that include both linear regression models and piecewise linear MARS models. MARSOPT is customized for an automotive crash safety system design problem for a major US automaker and solved using branch and bound. The solutions from MARSOPT are compared with those from customized genetic algorithms.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-016-0494-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Science ; Constraint modelling ; Customization ; Design engineering ; Genetic algorithms ; Global optimization ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Mixed integer ; Operations Research/Decision Theory ; Optimization ; Real Functions ; Regression ; Regression analysis ; Safety ; Splines</subject><ispartof>Journal of global optimization, 2017-07, Vol.68 (3), p.563-586</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Journal of Global Optimization is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-b159f40b799e1481476091b28abe3e279f9e9be377166a2c6515d7d6a80c2b423</citedby><cites>FETCH-LOGICAL-c398t-b159f40b799e1481476091b28abe3e279f9e9be377166a2c6515d7d6a80c2b423</cites><orcidid>0000-0003-1935-7571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-016-0494-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-016-0494-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Martinez, Nadia</creatorcontrib><creatorcontrib>Anahideh, Hadis</creatorcontrib><creatorcontrib>Rosenberger, Jay M.</creatorcontrib><creatorcontrib>Martinez, Diana</creatorcontrib><creatorcontrib>Chen, Victoria C. P.</creatorcontrib><creatorcontrib>Wang, Bo Ping</creatorcontrib><title>Global optimization of non-convex piecewise linear regression splines</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>Multivariate adaptive regression spline (MARS) is a statistical modeling method used to represent a complex system. More recently, a version of MARS was modified to be piecewise linear. This paper presents a mixed integer linear program, called MARSOPT, that optimizes a non-convex piecewise linear MARS model subject to constraints that include both linear regression models and piecewise linear MARS models. MARSOPT is customized for an automotive crash safety system design problem for a major US automaker and solved using branch and bound. The solutions from MARSOPT are compared with those from customized genetic algorithms.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Constraint modelling</subject><subject>Customization</subject><subject>Design engineering</subject><subject>Genetic algorithms</subject><subject>Global optimization</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mixed integer</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Real Functions</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Safety</subject><subject>Splines</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UE1LxDAQDaLg-vEDvBU8Z51Jm6Y5LqKrIHjRc0i70yVLt6lJ169fb0o9eJE5zPB4b97MY-wKYYkA6iYiVLrigCWHQhdcHrEFSpVzobE8ZgvQQnIJgKfsLMYdAOhKigW7W3e-tl3mh9Ht3bcdne8z32a973nj-3f6zAZHDX24SFnnerIhC7QNFOPEjMOExQt20tou0uVvP2ev93cvtw_86Xn9eLt64k2uq5HXKHVbQK20JiwqLFQJGmtR2ZpyEkq3mnQalcKytKIpJcqN2pS2gkbUhcjP2fW8dwj-7UBxNDt_CH2yNKhBiTyXUibWcmZtbUfG9a0fg21SbWjv0lPUuoSvFFYFFrnCJMBZ0AQfY6DWDMHtbfgyCGaK18zxmhSvmeI1k4mYNTFx-y2FP6f8K_oBeUh8QQ</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Martinez, Nadia</creator><creator>Anahideh, Hadis</creator><creator>Rosenberger, Jay M.</creator><creator>Martinez, Diana</creator><creator>Chen, Victoria C. P.</creator><creator>Wang, Bo Ping</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1935-7571</orcidid></search><sort><creationdate>20170701</creationdate><title>Global optimization of non-convex piecewise linear regression splines</title><author>Martinez, Nadia ; Anahideh, Hadis ; Rosenberger, Jay M. ; Martinez, Diana ; Chen, Victoria C. P. ; Wang, Bo Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-b159f40b799e1481476091b28abe3e279f9e9be377166a2c6515d7d6a80c2b423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Constraint modelling</topic><topic>Customization</topic><topic>Design engineering</topic><topic>Genetic algorithms</topic><topic>Global optimization</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mixed integer</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Real Functions</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Safety</topic><topic>Splines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinez, Nadia</creatorcontrib><creatorcontrib>Anahideh, Hadis</creatorcontrib><creatorcontrib>Rosenberger, Jay M.</creatorcontrib><creatorcontrib>Martinez, Diana</creatorcontrib><creatorcontrib>Chen, Victoria C. P.</creatorcontrib><creatorcontrib>Wang, Bo Ping</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinez, Nadia</au><au>Anahideh, Hadis</au><au>Rosenberger, Jay M.</au><au>Martinez, Diana</au><au>Chen, Victoria C. P.</au><au>Wang, Bo Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global optimization of non-convex piecewise linear regression splines</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>68</volume><issue>3</issue><spage>563</spage><epage>586</epage><pages>563-586</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>Multivariate adaptive regression spline (MARS) is a statistical modeling method used to represent a complex system. More recently, a version of MARS was modified to be piecewise linear. This paper presents a mixed integer linear program, called MARSOPT, that optimizes a non-convex piecewise linear MARS model subject to constraints that include both linear regression models and piecewise linear MARS models. MARSOPT is customized for an automotive crash safety system design problem for a major US automaker and solved using branch and bound. The solutions from MARSOPT are compared with those from customized genetic algorithms.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-016-0494-5</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1935-7571</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-5001
ispartof Journal of global optimization, 2017-07, Vol.68 (3), p.563-586
issn 0925-5001
1573-2916
language eng
recordid cdi_proquest_journals_1907233555
source Springer Nature - Complete Springer Journals
subjects Algorithms
Computer Science
Constraint modelling
Customization
Design engineering
Genetic algorithms
Global optimization
Mathematical models
Mathematics
Mathematics and Statistics
Mixed integer
Operations Research/Decision Theory
Optimization
Real Functions
Regression
Regression analysis
Safety
Splines
title Global optimization of non-convex piecewise linear regression splines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A08%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20optimization%20of%20non-convex%20piecewise%20linear%20regression%20splines&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Martinez,%20Nadia&rft.date=2017-07-01&rft.volume=68&rft.issue=3&rft.spage=563&rft.epage=586&rft.pages=563-586&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-016-0494-5&rft_dat=%3Cgale_proqu%3EA718414371%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1907233555&rft_id=info:pmid/&rft_galeid=A718414371&rfr_iscdi=true