A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes

In this paper, we develop a version of the bundle method to solve unconstrained difference of convex (DC) programming problems. It is assumed that a DC representation of the objective function is available. Our main idea is to utilize subgradients of both the first and second components in the DC re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2017-07, Vol.68 (3), p.501-535
Hauptverfasser: Joki, Kaisa, Bagirov, Adil M., Karmitsa, Napsu, Mäkelä, Marko M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 535
container_issue 3
container_start_page 501
container_title Journal of global optimization
container_volume 68
creator Joki, Kaisa
Bagirov, Adil M.
Karmitsa, Napsu
Mäkelä, Marko M.
description In this paper, we develop a version of the bundle method to solve unconstrained difference of convex (DC) programming problems. It is assumed that a DC representation of the objective function is available. Our main idea is to utilize subgradients of both the first and second components in the DC representation. This subgradient information is gathered from some neighborhood of the current iteration point and it is used to build separately an approximation for each component in the DC representation. By combining these approximations we obtain a new nonconvex cutting plane model of the original objective function, which takes into account explicitly both the convex and the concave behavior of the objective function. We design the proximal bundle method for DC programming based on this new approach and prove the convergence of the method to an ε -critical point. The algorithm is tested using some academic test problems and the preliminary numerical results have shown the good performance of the new bundle method. An interesting fact is that the new algorithm finds nearly always the global solution in our test problems.
doi_str_mv 10.1007/s10898-016-0488-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1907233175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718414369</galeid><sourcerecordid>A718414369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-9668d1407a4ef69ba8f85880481072d947c4e923aa04b2e1333cf946834697143</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EEqXwAdgsMRvs2E7ssSp_pUosMDBZbuK0rhK72A4q_fQ4CgMLuuGk0_u9u3sAXBN8SzCu7iLBQgqESYkwEwLREzAjvKKokKQ8BTMsC444xuQcXMS4wxhLwYsZ-FjAffAH2-sOrgfXdAb2Jm19A1sfoPMu9t6nLbxfQr9PtrdHnax3cEi2s0frNqOm9u7LHGA9pDRO9p12Jl6Cs1Z30Vz99jl4f3x4Wz6j1evTy3KxQjXlPCFZlqIhDFeambaUay1awYXITxBcFY1kVc2MLKjWmK0LQyildStZKSgrZUUYnYObyTf_8TmYmNTOD8HllYrIbEEpqXhW3U6qje6Msq71Keg6V2N6m-83rc3zRUUEy56lzACZgDr4GINp1T7klMK3IliNkaspcpUjV2PkimammJiYtW5jwp9T_oV-ANawgxE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1907233175</pqid></control><display><type>article</type><title>A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Joki, Kaisa ; Bagirov, Adil M. ; Karmitsa, Napsu ; Mäkelä, Marko M.</creator><creatorcontrib>Joki, Kaisa ; Bagirov, Adil M. ; Karmitsa, Napsu ; Mäkelä, Marko M.</creatorcontrib><description>In this paper, we develop a version of the bundle method to solve unconstrained difference of convex (DC) programming problems. It is assumed that a DC representation of the objective function is available. Our main idea is to utilize subgradients of both the first and second components in the DC representation. This subgradient information is gathered from some neighborhood of the current iteration point and it is used to build separately an approximation for each component in the DC representation. By combining these approximations we obtain a new nonconvex cutting plane model of the original objective function, which takes into account explicitly both the convex and the concave behavior of the objective function. We design the proximal bundle method for DC programming based on this new approach and prove the convergence of the method to an ε -critical point. The algorithm is tested using some academic test problems and the preliminary numerical results have shown the good performance of the new bundle method. An interesting fact is that the new algorithm finds nearly always the global solution in our test problems.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-016-0488-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Analysis ; Approximation ; Bundling ; Computer Science ; Convergence ; Critical point ; Cutting ; Iterative methods ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Methods ; Operations Research/Decision Theory ; Optimization ; Planes ; Programming ; Real Functions</subject><ispartof>Journal of global optimization, 2017-07, Vol.68 (3), p.501-535</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Journal of Global Optimization is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-9668d1407a4ef69ba8f85880481072d947c4e923aa04b2e1333cf946834697143</citedby><cites>FETCH-LOGICAL-c355t-9668d1407a4ef69ba8f85880481072d947c4e923aa04b2e1333cf946834697143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-016-0488-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-016-0488-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Joki, Kaisa</creatorcontrib><creatorcontrib>Bagirov, Adil M.</creatorcontrib><creatorcontrib>Karmitsa, Napsu</creatorcontrib><creatorcontrib>Mäkelä, Marko M.</creatorcontrib><title>A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>In this paper, we develop a version of the bundle method to solve unconstrained difference of convex (DC) programming problems. It is assumed that a DC representation of the objective function is available. Our main idea is to utilize subgradients of both the first and second components in the DC representation. This subgradient information is gathered from some neighborhood of the current iteration point and it is used to build separately an approximation for each component in the DC representation. By combining these approximations we obtain a new nonconvex cutting plane model of the original objective function, which takes into account explicitly both the convex and the concave behavior of the objective function. We design the proximal bundle method for DC programming based on this new approach and prove the convergence of the method to an ε -critical point. The algorithm is tested using some academic test problems and the preliminary numerical results have shown the good performance of the new bundle method. An interesting fact is that the new algorithm finds nearly always the global solution in our test problems.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Approximation</subject><subject>Bundling</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Critical point</subject><subject>Cutting</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Planes</subject><subject>Programming</subject><subject>Real Functions</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kD9PwzAQxS0EEqXwAdgsMRvs2E7ssSp_pUosMDBZbuK0rhK72A4q_fQ4CgMLuuGk0_u9u3sAXBN8SzCu7iLBQgqESYkwEwLREzAjvKKokKQ8BTMsC444xuQcXMS4wxhLwYsZ-FjAffAH2-sOrgfXdAb2Jm19A1sfoPMu9t6nLbxfQr9PtrdHnax3cEi2s0frNqOm9u7LHGA9pDRO9p12Jl6Cs1Z30Vz99jl4f3x4Wz6j1evTy3KxQjXlPCFZlqIhDFeambaUay1awYXITxBcFY1kVc2MLKjWmK0LQyildStZKSgrZUUYnYObyTf_8TmYmNTOD8HllYrIbEEpqXhW3U6qje6Msq71Keg6V2N6m-83rc3zRUUEy56lzACZgDr4GINp1T7klMK3IliNkaspcpUjV2PkimammJiYtW5jwp9T_oV-ANawgxE</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Joki, Kaisa</creator><creator>Bagirov, Adil M.</creator><creator>Karmitsa, Napsu</creator><creator>Mäkelä, Marko M.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20170701</creationdate><title>A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes</title><author>Joki, Kaisa ; Bagirov, Adil M. ; Karmitsa, Napsu ; Mäkelä, Marko M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-9668d1407a4ef69ba8f85880481072d947c4e923aa04b2e1333cf946834697143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Approximation</topic><topic>Bundling</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Critical point</topic><topic>Cutting</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Planes</topic><topic>Programming</topic><topic>Real Functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joki, Kaisa</creatorcontrib><creatorcontrib>Bagirov, Adil M.</creatorcontrib><creatorcontrib>Karmitsa, Napsu</creatorcontrib><creatorcontrib>Mäkelä, Marko M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joki, Kaisa</au><au>Bagirov, Adil M.</au><au>Karmitsa, Napsu</au><au>Mäkelä, Marko M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>68</volume><issue>3</issue><spage>501</spage><epage>535</epage><pages>501-535</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>In this paper, we develop a version of the bundle method to solve unconstrained difference of convex (DC) programming problems. It is assumed that a DC representation of the objective function is available. Our main idea is to utilize subgradients of both the first and second components in the DC representation. This subgradient information is gathered from some neighborhood of the current iteration point and it is used to build separately an approximation for each component in the DC representation. By combining these approximations we obtain a new nonconvex cutting plane model of the original objective function, which takes into account explicitly both the convex and the concave behavior of the objective function. We design the proximal bundle method for DC programming based on this new approach and prove the convergence of the method to an ε -critical point. The algorithm is tested using some academic test problems and the preliminary numerical results have shown the good performance of the new bundle method. An interesting fact is that the new algorithm finds nearly always the global solution in our test problems.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-016-0488-3</doi><tpages>35</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-5001
ispartof Journal of global optimization, 2017-07, Vol.68 (3), p.501-535
issn 0925-5001
1573-2916
language eng
recordid cdi_proquest_journals_1907233175
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Analysis
Approximation
Bundling
Computer Science
Convergence
Critical point
Cutting
Iterative methods
Mathematical analysis
Mathematics
Mathematics and Statistics
Methods
Operations Research/Decision Theory
Optimization
Planes
Programming
Real Functions
title A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A37%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20proximal%20bundle%20method%20for%20nonsmooth%20DC%20optimization%20utilizing%20nonconvex%20cutting%20planes&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Joki,%20Kaisa&rft.date=2017-07-01&rft.volume=68&rft.issue=3&rft.spage=501&rft.epage=535&rft.pages=501-535&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-016-0488-3&rft_dat=%3Cgale_proqu%3EA718414369%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1907233175&rft_id=info:pmid/&rft_galeid=A718414369&rfr_iscdi=true