Elastic Evaluation of Poly(Lactic Acid) Electrospun Membranes Using the Pulsed Photoacoustic Technique
Fibrous membranes manufactured by electrospinning possess unique features such as a high porosity and large specific surface area, making them suitable for applications in tissue engineering. However, the determination of their mechanical behavior under different loading conditions remains one of th...
Gespeichert in:
Veröffentlicht in: | International journal of thermophysics 2017-08, Vol.38 (8), p.1-13, Article 121 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fibrous membranes manufactured by electrospinning possess unique features such as a high porosity and large specific surface area, making them suitable for applications in tissue engineering. However, the determination of their mechanical behavior under different loading conditions remains one of the most difficult technical problems for researchers to overcome. While the tensile properties of this kind of membrane are commonly reported in the literature, few explorations of their properties in other directions have been reported. In this paper, the pulsed photoacoustic technique is employed to obtain the elastic constants of electrospun non-woven membranes, specifically in two directions (
L
,
T
). The electrospun samples are hybrid fiber membranes of poly(lactic acid) and hydroxyapatite (HA) nanoparticles at different concentrations. It is found that the concentration of HA nanoparticles determines the mechanical response of the membrane, where the nanoparticles act either as a reinforcement or as a mesh defect. The elastic constants (
E
L
,
E
T
,
G
L
,
G
T
,
v
L
,
ν
T
) are obtained through velocity waves related to the stress–strain equations, using samples with two different geometries and considering the electrospinning mats as a transversely isotropic material. These values are compared to those acquired using macro-tensile testing equipment according to the ASTM D1708 standard.
Graphical Abstract |
---|---|
ISSN: | 0195-928X 1572-9567 |
DOI: | 10.1007/s10765-017-2251-5 |