Finite Sample Critical Values of the Generalized KPSS Stationarity Test
Testing for stationarity and unit roots has become standard practice in time series analysis and while many tests have known asymptotic properties, their small sample performance is sometimes less-well understood. Researchers rely on response surface regressions to provide small sample critical valu...
Gespeichert in:
Veröffentlicht in: | Computational economics 2017-06, Vol.50 (1), p.161-172 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 172 |
---|---|
container_issue | 1 |
container_start_page | 161 |
container_title | Computational economics |
container_volume | 50 |
creator | Sephton, Peter |
description | Testing for stationarity and unit roots has become standard practice in time series analysis and while many tests have known asymptotic properties, their small sample performance is sometimes less-well understood. Researchers rely on response surface regressions to provide small sample critical values for use in applied work. In this paper an updated series of Monte Carlo experiments provides response surface estimates of the critical 1, 5, and 10 % values of the Kwiatkowski et al. (J Econ 54: 91–115,
1992
) test of stationarity and its generalization by Hobijn et al. (Stat Neerlandica 58(4): 483–502,
2004
). |
doi_str_mv | 10.1007/s10614-016-9586-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1906817256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1906817256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-1b3a6eca242f6a9cea1a31c7460a3a4714fc9d445e7bb3a2d93fe084d12a04233</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EEqXwAWyWmA1-jmPHI6poQVQCKYXVek0cSJUmxXaH9usxCgML01vOvffpEHIN_BY413cBuALJOChm8kKx4wmZQK4FM0bLUzLhRmimuTHn5CKEDec8ByEmZDFv-zY6WuJ21zk6821sK-zoO3Z7F-jQ0Pjp6ML1zmPXHl1Nn1_LkpYRYzv0mPADXbkQL8lZg11wV793St7mD6vZI1u-LJ5m90tWZQVEBusMlatQSNEoNJVDwAwqLRXHDKUG2VSmljJ3ep1QUZuscbyQNQjkUmTZlNyMvTs_fKUPo90Me9-nSQuGqwK0yFWiYKQqP4TgXWN3vt2iP1jg9seXHX3Z5Mv--LLHlBFjJiS2_3D-T_O_oW8l8G1o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1906817256</pqid></control><display><type>article</type><title>Finite Sample Critical Values of the Generalized KPSS Stationarity Test</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sephton, Peter</creator><creatorcontrib>Sephton, Peter</creatorcontrib><description>Testing for stationarity and unit roots has become standard practice in time series analysis and while many tests have known asymptotic properties, their small sample performance is sometimes less-well understood. Researchers rely on response surface regressions to provide small sample critical values for use in applied work. In this paper an updated series of Monte Carlo experiments provides response surface estimates of the critical 1, 5, and 10 % values of the Kwiatkowski et al. (J Econ 54: 91–115,
1992
) test of stationarity and its generalization by Hobijn et al. (Stat Neerlandica 58(4): 483–502,
2004
).</description><identifier>ISSN: 0927-7099</identifier><identifier>EISSN: 1572-9974</identifier><identifier>DOI: 10.1007/s10614-016-9586-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymptotic properties ; Behavioral/Experimental Economics ; Computer Appl. in Social and Behavioral Sciences ; Economic models ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Estimates ; Math Applications in Computer Science ; Mathematical analysis ; Monte Carlo simulation ; Operations Research/Decision Theory ; Regression analysis ; Roots ; Time series ; Unit roots ; Values</subject><ispartof>Computational economics, 2017-06, Vol.50 (1), p.161-172</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Computational Economics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-1b3a6eca242f6a9cea1a31c7460a3a4714fc9d445e7bb3a2d93fe084d12a04233</citedby><cites>FETCH-LOGICAL-c381t-1b3a6eca242f6a9cea1a31c7460a3a4714fc9d445e7bb3a2d93fe084d12a04233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10614-016-9586-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10614-016-9586-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Sephton, Peter</creatorcontrib><title>Finite Sample Critical Values of the Generalized KPSS Stationarity Test</title><title>Computational economics</title><addtitle>Comput Econ</addtitle><description>Testing for stationarity and unit roots has become standard practice in time series analysis and while many tests have known asymptotic properties, their small sample performance is sometimes less-well understood. Researchers rely on response surface regressions to provide small sample critical values for use in applied work. In this paper an updated series of Monte Carlo experiments provides response surface estimates of the critical 1, 5, and 10 % values of the Kwiatkowski et al. (J Econ 54: 91–115,
1992
) test of stationarity and its generalization by Hobijn et al. (Stat Neerlandica 58(4): 483–502,
2004
).</description><subject>Asymptotic properties</subject><subject>Behavioral/Experimental Economics</subject><subject>Computer Appl. in Social and Behavioral Sciences</subject><subject>Economic models</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Estimates</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical analysis</subject><subject>Monte Carlo simulation</subject><subject>Operations Research/Decision Theory</subject><subject>Regression analysis</subject><subject>Roots</subject><subject>Time series</subject><subject>Unit roots</subject><subject>Values</subject><issn>0927-7099</issn><issn>1572-9974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kLFOwzAURS0EEqXwAWyWmA1-jmPHI6poQVQCKYXVek0cSJUmxXaH9usxCgML01vOvffpEHIN_BY413cBuALJOChm8kKx4wmZQK4FM0bLUzLhRmimuTHn5CKEDec8ByEmZDFv-zY6WuJ21zk6821sK-zoO3Z7F-jQ0Pjp6ML1zmPXHl1Nn1_LkpYRYzv0mPADXbkQL8lZg11wV793St7mD6vZI1u-LJ5m90tWZQVEBusMlatQSNEoNJVDwAwqLRXHDKUG2VSmljJ3ep1QUZuscbyQNQjkUmTZlNyMvTs_fKUPo90Me9-nSQuGqwK0yFWiYKQqP4TgXWN3vt2iP1jg9seXHX3Z5Mv--LLHlBFjJiS2_3D-T_O_oW8l8G1o</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Sephton, Peter</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20170601</creationdate><title>Finite Sample Critical Values of the Generalized KPSS Stationarity Test</title><author>Sephton, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-1b3a6eca242f6a9cea1a31c7460a3a4714fc9d445e7bb3a2d93fe084d12a04233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Asymptotic properties</topic><topic>Behavioral/Experimental Economics</topic><topic>Computer Appl. in Social and Behavioral Sciences</topic><topic>Economic models</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Estimates</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical analysis</topic><topic>Monte Carlo simulation</topic><topic>Operations Research/Decision Theory</topic><topic>Regression analysis</topic><topic>Roots</topic><topic>Time series</topic><topic>Unit roots</topic><topic>Values</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sephton, Peter</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sephton, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite Sample Critical Values of the Generalized KPSS Stationarity Test</atitle><jtitle>Computational economics</jtitle><stitle>Comput Econ</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>50</volume><issue>1</issue><spage>161</spage><epage>172</epage><pages>161-172</pages><issn>0927-7099</issn><eissn>1572-9974</eissn><abstract>Testing for stationarity and unit roots has become standard practice in time series analysis and while many tests have known asymptotic properties, their small sample performance is sometimes less-well understood. Researchers rely on response surface regressions to provide small sample critical values for use in applied work. In this paper an updated series of Monte Carlo experiments provides response surface estimates of the critical 1, 5, and 10 % values of the Kwiatkowski et al. (J Econ 54: 91–115,
1992
) test of stationarity and its generalization by Hobijn et al. (Stat Neerlandica 58(4): 483–502,
2004
).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10614-016-9586-z</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7099 |
ispartof | Computational economics, 2017-06, Vol.50 (1), p.161-172 |
issn | 0927-7099 1572-9974 |
language | eng |
recordid | cdi_proquest_journals_1906817256 |
source | SpringerLink Journals - AutoHoldings |
subjects | Asymptotic properties Behavioral/Experimental Economics Computer Appl. in Social and Behavioral Sciences Economic models Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Estimates Math Applications in Computer Science Mathematical analysis Monte Carlo simulation Operations Research/Decision Theory Regression analysis Roots Time series Unit roots Values |
title | Finite Sample Critical Values of the Generalized KPSS Stationarity Test |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A50%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20Sample%20Critical%20Values%20of%20the%20Generalized%20KPSS%20Stationarity%20Test&rft.jtitle=Computational%20economics&rft.au=Sephton,%20Peter&rft.date=2017-06-01&rft.volume=50&rft.issue=1&rft.spage=161&rft.epage=172&rft.pages=161-172&rft.issn=0927-7099&rft.eissn=1572-9974&rft_id=info:doi/10.1007/s10614-016-9586-z&rft_dat=%3Cproquest_cross%3E1906817256%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1906817256&rft_id=info:pmid/&rfr_iscdi=true |