Vulnerability of rotifers and copepod nauplii to predation by Cyclops kolensis (Crustacea, Copepoda) under varying temperatures in Lake Baikal, Siberia

As lakes warm worldwide, temperature may alter plankton community structure and abundance by affecting not only metabolism but also trophic interactions. Siberia’s Lake Baikal presents special opportunity for studying shifting trophic interactions among cryophilic zooplankton species in a rapidly wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrobiologia 2017-07, Vol.796 (1), p.309-318
Hauptverfasser: Meyer, Michael F., Hampton, Stephanie E., Ozersky, Tedy, Rusanovskaya, Olga O., Woo, Kara H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue 1
container_start_page 309
container_title Hydrobiologia
container_volume 796
creator Meyer, Michael F.
Hampton, Stephanie E.
Ozersky, Tedy
Rusanovskaya, Olga O.
Woo, Kara H.
description As lakes warm worldwide, temperature may alter plankton community structure and abundance by affecting not only metabolism but also trophic interactions. Siberia’s Lake Baikal presents special opportunity for studying shifting trophic interactions among cryophilic zooplankton species in a rapidly warming lake. To understand how warming may affect trophic interactions among plankton, we studied predator–prey relationships of a copepod predator ( Cyclops kolensis ) with three prey types: two rotifer species ( Gastropus stylifer and Keratella cochlearis ) and copepod nauplii. We hypothesized that the less evasive Gastropus and Keratella would be more susceptible to predation than nauplii. We exposed a starved predator to individuals of each prey type and observed encounters, ingestions, and escapes. Contrary to our hypothesis, Keratella were consumed at lower rates than nauplii, due to higher probability of ingestion after encounter with nauplii. In a second experiment, we assessed how predation varied across a thermal gradient, confining all three prey types and one starved predator at 5° temperature increments (5–20°C). Predation outcomes mirrored observational feeding trials, and predation outcomes were independent of temperature. Rotifers’ relatively high reproductive rate may present a mechanism to withstand predation should copepod’s preferred nauplii prey become less abundant in a warmer Baikal.
doi_str_mv 10.1007/s10750-016-3005-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1906815816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A494781812</galeid><sourcerecordid>A494781812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-1c0e5215dfc8e5d77694894769639161754fc8020eb037c3937f86257cdfb5483</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxiMEEkvLA3AbiQtITetJ4jg5loh_0kocaLlajjNeuZu1g-0g7ZPwungVDlyQDyPZ32--8XxF8QbZLTIm7iIywVnJsC1rxnhZPSt2yEVdckTxvNgxhl3ZIe9eFq9ifGKZ6Su2K37_WGdHQY12tukM3kDwyRoKEZSbQPuFFj-BU-syWwvJwxJoUsl6B-MZhrOe_RLh6Gdy0UZ4N4Q1JqVJ3cCwweo9rG6iAL9UOFt3gESnJVumNVAE62CvjgQflD2q-Qa-25GCVdfFC6PmSK__1qvi8dPHh-FLuf_2-etwvy91zXkqUTPiFfLJ6I74JETbN13f5NLWPbYoeJNfWMVoZLXQdV8L07UVF3oyI2-6-qp4u_Vdgv-5Ukzyya_BZUuJPWsvG8M2q2431UHNJK0zPgWl85noZLV3ZGy-v2-yc4cdVhnADdDBxxjIyCXYU_6_RCYvgcktMJkDk5fA5IWpNiZmrTtQ-GeU_0J_AEqJmQ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1906815816</pqid></control><display><type>article</type><title>Vulnerability of rotifers and copepod nauplii to predation by Cyclops kolensis (Crustacea, Copepoda) under varying temperatures in Lake Baikal, Siberia</title><source>SpringerLink Journals - AutoHoldings</source><creator>Meyer, Michael F. ; Hampton, Stephanie E. ; Ozersky, Tedy ; Rusanovskaya, Olga O. ; Woo, Kara H.</creator><creatorcontrib>Meyer, Michael F. ; Hampton, Stephanie E. ; Ozersky, Tedy ; Rusanovskaya, Olga O. ; Woo, Kara H.</creatorcontrib><description>As lakes warm worldwide, temperature may alter plankton community structure and abundance by affecting not only metabolism but also trophic interactions. Siberia’s Lake Baikal presents special opportunity for studying shifting trophic interactions among cryophilic zooplankton species in a rapidly warming lake. To understand how warming may affect trophic interactions among plankton, we studied predator–prey relationships of a copepod predator ( Cyclops kolensis ) with three prey types: two rotifer species ( Gastropus stylifer and Keratella cochlearis ) and copepod nauplii. We hypothesized that the less evasive Gastropus and Keratella would be more susceptible to predation than nauplii. We exposed a starved predator to individuals of each prey type and observed encounters, ingestions, and escapes. Contrary to our hypothesis, Keratella were consumed at lower rates than nauplii, due to higher probability of ingestion after encounter with nauplii. In a second experiment, we assessed how predation varied across a thermal gradient, confining all three prey types and one starved predator at 5° temperature increments (5–20°C). Predation outcomes mirrored observational feeding trials, and predation outcomes were independent of temperature. Rotifers’ relatively high reproductive rate may present a mechanism to withstand predation should copepod’s preferred nauplii prey become less abundant in a warmer Baikal.</description><identifier>ISSN: 0018-8158</identifier><identifier>EISSN: 1573-5117</identifier><identifier>DOI: 10.1007/s10750-016-3005-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Abundance ; Aquatic crustaceans ; Biomedical and Life Sciences ; Communities ; Community structure ; Confining ; Ecology ; Exposure ; Feeding ; Feeding trials ; Freshwater &amp; Marine Ecology ; Ingestion ; Interactions ; Interspecific relationships ; Lakes ; Life Sciences ; Marine invertebrates ; Metabolism ; Nauplii ; Physiological aspects ; Plankton ; Predation ; Predation (Biology) ; Predator-prey interactions ; Predators ; Prey ; Probability theory ; Rotifera XIV ; Temperature ; Temperature effects ; Trophic relationships ; Vulnerability ; Zoology ; Zooplankton</subject><ispartof>Hydrobiologia, 2017-07, Vol.796 (1), p.309-318</ispartof><rights>Springer International Publishing Switzerland 2016</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Hydrobiologia is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-1c0e5215dfc8e5d77694894769639161754fc8020eb037c3937f86257cdfb5483</citedby><cites>FETCH-LOGICAL-c355t-1c0e5215dfc8e5d77694894769639161754fc8020eb037c3937f86257cdfb5483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10750-016-3005-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10750-016-3005-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Meyer, Michael F.</creatorcontrib><creatorcontrib>Hampton, Stephanie E.</creatorcontrib><creatorcontrib>Ozersky, Tedy</creatorcontrib><creatorcontrib>Rusanovskaya, Olga O.</creatorcontrib><creatorcontrib>Woo, Kara H.</creatorcontrib><title>Vulnerability of rotifers and copepod nauplii to predation by Cyclops kolensis (Crustacea, Copepoda) under varying temperatures in Lake Baikal, Siberia</title><title>Hydrobiologia</title><addtitle>Hydrobiologia</addtitle><description>As lakes warm worldwide, temperature may alter plankton community structure and abundance by affecting not only metabolism but also trophic interactions. Siberia’s Lake Baikal presents special opportunity for studying shifting trophic interactions among cryophilic zooplankton species in a rapidly warming lake. To understand how warming may affect trophic interactions among plankton, we studied predator–prey relationships of a copepod predator ( Cyclops kolensis ) with three prey types: two rotifer species ( Gastropus stylifer and Keratella cochlearis ) and copepod nauplii. We hypothesized that the less evasive Gastropus and Keratella would be more susceptible to predation than nauplii. We exposed a starved predator to individuals of each prey type and observed encounters, ingestions, and escapes. Contrary to our hypothesis, Keratella were consumed at lower rates than nauplii, due to higher probability of ingestion after encounter with nauplii. In a second experiment, we assessed how predation varied across a thermal gradient, confining all three prey types and one starved predator at 5° temperature increments (5–20°C). Predation outcomes mirrored observational feeding trials, and predation outcomes were independent of temperature. Rotifers’ relatively high reproductive rate may present a mechanism to withstand predation should copepod’s preferred nauplii prey become less abundant in a warmer Baikal.</description><subject>Abundance</subject><subject>Aquatic crustaceans</subject><subject>Biomedical and Life Sciences</subject><subject>Communities</subject><subject>Community structure</subject><subject>Confining</subject><subject>Ecology</subject><subject>Exposure</subject><subject>Feeding</subject><subject>Feeding trials</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Ingestion</subject><subject>Interactions</subject><subject>Interspecific relationships</subject><subject>Lakes</subject><subject>Life Sciences</subject><subject>Marine invertebrates</subject><subject>Metabolism</subject><subject>Nauplii</subject><subject>Physiological aspects</subject><subject>Plankton</subject><subject>Predation</subject><subject>Predation (Biology)</subject><subject>Predator-prey interactions</subject><subject>Predators</subject><subject>Prey</subject><subject>Probability theory</subject><subject>Rotifera XIV</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Trophic relationships</subject><subject>Vulnerability</subject><subject>Zoology</subject><subject>Zooplankton</subject><issn>0018-8158</issn><issn>1573-5117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kc9u1DAQxiMEEkvLA3AbiQtITetJ4jg5loh_0kocaLlajjNeuZu1g-0g7ZPwungVDlyQDyPZ32--8XxF8QbZLTIm7iIywVnJsC1rxnhZPSt2yEVdckTxvNgxhl3ZIe9eFq9ifGKZ6Su2K37_WGdHQY12tukM3kDwyRoKEZSbQPuFFj-BU-syWwvJwxJoUsl6B-MZhrOe_RLh6Gdy0UZ4N4Q1JqVJ3cCwweo9rG6iAL9UOFt3gESnJVumNVAE62CvjgQflD2q-Qa-25GCVdfFC6PmSK__1qvi8dPHh-FLuf_2-etwvy91zXkqUTPiFfLJ6I74JETbN13f5NLWPbYoeJNfWMVoZLXQdV8L07UVF3oyI2-6-qp4u_Vdgv-5Ukzyya_BZUuJPWsvG8M2q2431UHNJK0zPgWl85noZLV3ZGy-v2-yc4cdVhnADdDBxxjIyCXYU_6_RCYvgcktMJkDk5fA5IWpNiZmrTtQ-GeU_0J_AEqJmQ8</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Meyer, Michael F.</creator><creator>Hampton, Stephanie E.</creator><creator>Ozersky, Tedy</creator><creator>Rusanovskaya, Olga O.</creator><creator>Woo, Kara H.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QH</scope><scope>7SN</scope><scope>7SS</scope><scope>7U7</scope><scope>7UA</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope></search><sort><creationdate>20170701</creationdate><title>Vulnerability of rotifers and copepod nauplii to predation by Cyclops kolensis (Crustacea, Copepoda) under varying temperatures in Lake Baikal, Siberia</title><author>Meyer, Michael F. ; Hampton, Stephanie E. ; Ozersky, Tedy ; Rusanovskaya, Olga O. ; Woo, Kara H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-1c0e5215dfc8e5d77694894769639161754fc8020eb037c3937f86257cdfb5483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Abundance</topic><topic>Aquatic crustaceans</topic><topic>Biomedical and Life Sciences</topic><topic>Communities</topic><topic>Community structure</topic><topic>Confining</topic><topic>Ecology</topic><topic>Exposure</topic><topic>Feeding</topic><topic>Feeding trials</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Ingestion</topic><topic>Interactions</topic><topic>Interspecific relationships</topic><topic>Lakes</topic><topic>Life Sciences</topic><topic>Marine invertebrates</topic><topic>Metabolism</topic><topic>Nauplii</topic><topic>Physiological aspects</topic><topic>Plankton</topic><topic>Predation</topic><topic>Predation (Biology)</topic><topic>Predator-prey interactions</topic><topic>Predators</topic><topic>Prey</topic><topic>Probability theory</topic><topic>Rotifera XIV</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Trophic relationships</topic><topic>Vulnerability</topic><topic>Zoology</topic><topic>Zooplankton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyer, Michael F.</creatorcontrib><creatorcontrib>Hampton, Stephanie E.</creatorcontrib><creatorcontrib>Ozersky, Tedy</creatorcontrib><creatorcontrib>Rusanovskaya, Olga O.</creatorcontrib><creatorcontrib>Woo, Kara H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><jtitle>Hydrobiologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyer, Michael F.</au><au>Hampton, Stephanie E.</au><au>Ozersky, Tedy</au><au>Rusanovskaya, Olga O.</au><au>Woo, Kara H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vulnerability of rotifers and copepod nauplii to predation by Cyclops kolensis (Crustacea, Copepoda) under varying temperatures in Lake Baikal, Siberia</atitle><jtitle>Hydrobiologia</jtitle><stitle>Hydrobiologia</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>796</volume><issue>1</issue><spage>309</spage><epage>318</epage><pages>309-318</pages><issn>0018-8158</issn><eissn>1573-5117</eissn><abstract>As lakes warm worldwide, temperature may alter plankton community structure and abundance by affecting not only metabolism but also trophic interactions. Siberia’s Lake Baikal presents special opportunity for studying shifting trophic interactions among cryophilic zooplankton species in a rapidly warming lake. To understand how warming may affect trophic interactions among plankton, we studied predator–prey relationships of a copepod predator ( Cyclops kolensis ) with three prey types: two rotifer species ( Gastropus stylifer and Keratella cochlearis ) and copepod nauplii. We hypothesized that the less evasive Gastropus and Keratella would be more susceptible to predation than nauplii. We exposed a starved predator to individuals of each prey type and observed encounters, ingestions, and escapes. Contrary to our hypothesis, Keratella were consumed at lower rates than nauplii, due to higher probability of ingestion after encounter with nauplii. In a second experiment, we assessed how predation varied across a thermal gradient, confining all three prey types and one starved predator at 5° temperature increments (5–20°C). Predation outcomes mirrored observational feeding trials, and predation outcomes were independent of temperature. Rotifers’ relatively high reproductive rate may present a mechanism to withstand predation should copepod’s preferred nauplii prey become less abundant in a warmer Baikal.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10750-016-3005-2</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-8158
ispartof Hydrobiologia, 2017-07, Vol.796 (1), p.309-318
issn 0018-8158
1573-5117
language eng
recordid cdi_proquest_journals_1906815816
source SpringerLink Journals - AutoHoldings
subjects Abundance
Aquatic crustaceans
Biomedical and Life Sciences
Communities
Community structure
Confining
Ecology
Exposure
Feeding
Feeding trials
Freshwater & Marine Ecology
Ingestion
Interactions
Interspecific relationships
Lakes
Life Sciences
Marine invertebrates
Metabolism
Nauplii
Physiological aspects
Plankton
Predation
Predation (Biology)
Predator-prey interactions
Predators
Prey
Probability theory
Rotifera XIV
Temperature
Temperature effects
Trophic relationships
Vulnerability
Zoology
Zooplankton
title Vulnerability of rotifers and copepod nauplii to predation by Cyclops kolensis (Crustacea, Copepoda) under varying temperatures in Lake Baikal, Siberia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vulnerability%20of%20rotifers%20and%20copepod%20nauplii%20to%20predation%20by%20Cyclops%20kolensis%20(Crustacea,%20Copepoda)%20under%20varying%20temperatures%20in%20Lake%20Baikal,%20Siberia&rft.jtitle=Hydrobiologia&rft.au=Meyer,%20Michael%20F.&rft.date=2017-07-01&rft.volume=796&rft.issue=1&rft.spage=309&rft.epage=318&rft.pages=309-318&rft.issn=0018-8158&rft.eissn=1573-5117&rft_id=info:doi/10.1007/s10750-016-3005-2&rft_dat=%3Cgale_proqu%3EA494781812%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1906815816&rft_id=info:pmid/&rft_galeid=A494781812&rfr_iscdi=true