An empirical model for the mean period (Tm) of ground motions using the NGA-West2 database

Frequency content is an important characteristic of earthquake shakings. The mean period (T m ) of a ground motion has been regarded as the preferred frequency content parameter. In this paper, a new predictive model for T m is developed based on the horizontal components of ground motions selected...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of earthquake engineering 2017-07, Vol.15 (7), p.2673-2693
1. Verfasser: Du, Wenqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2693
container_issue 7
container_start_page 2673
container_title Bulletin of earthquake engineering
container_volume 15
creator Du, Wenqi
description Frequency content is an important characteristic of earthquake shakings. The mean period (T m ) of a ground motion has been regarded as the preferred frequency content parameter. In this paper, a new predictive model for T m is developed based on the horizontal components of ground motions selected from the expanded NGA-West2 database. The new model includes a piece-wise linear moment magnitude (M w ) term with a breaking M w value as 5 and a cutoff value as 7.3, which is adopted based on the distribution of empirical data as well as physical considerations. A trilinear rupture distance term with breaking points at 100 km and 200 km is also adopted in the model. The average shear wave velocity at top 30 meters (V s30 ) and a basin depth parameter (Z 1 ) are used to represent the effect of local site conditions on T m . A forward directivity term that takes effect at rupture distances within 40 km is included in the functional form. Besides, we derive a magnitude-dependent aleatory variability model to capture the varying within-event standard deviations versus M w . The proposed model can be used to estimate T m for earthquake scenarios with magnitudes in the range of 3–7.9 and rupture distance up to 300 km.
doi_str_mv 10.1007/s10518-017-0088-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1906812970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1906812970</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-1e6fa438ee2e7caf5214fd458509c4e0f1bac98cb3b6054af49bb5279caeea8a3</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGyWWGAwnJM4tseqgoJUwVIEYrGc5FxSNXGwk4G3J20ZWJjuhu__7_QRcsnhlgPIu8hBcMWASwagFFNHZMKFTBnPRH6834HJnL-fkrMYNwCJkBom5GPWUmy6OtSl3dLGV7ilzgfafyJt0La0w1D7il6vmhvqHV0HP7TVCPa1byMdYt2u9_DzYsbeMPYJrWxvCxvxnJw4u4148Tun5PXhfjV_ZMuXxdN8tmQ2TXXPOObOZqlCTFCW1omEZ67KhBKgywzB8cKWWpVFWuQgMusyXRQikbq0iFbZdEquDr1d8F_D-ILZ-CG040nDNeSKJ1rCSPEDVQYfY0BnulA3NnwbDman0BwUmlGh2Sk0aswkh0wc2XaN4U_zv6EfHOhziA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1906812970</pqid></control><display><type>article</type><title>An empirical model for the mean period (Tm) of ground motions using the NGA-West2 database</title><source>SpringerLink Journals - AutoHoldings</source><creator>Du, Wenqi</creator><creatorcontrib>Du, Wenqi</creatorcontrib><description>Frequency content is an important characteristic of earthquake shakings. The mean period (T m ) of a ground motion has been regarded as the preferred frequency content parameter. In this paper, a new predictive model for T m is developed based on the horizontal components of ground motions selected from the expanded NGA-West2 database. The new model includes a piece-wise linear moment magnitude (M w ) term with a breaking M w value as 5 and a cutoff value as 7.3, which is adopted based on the distribution of empirical data as well as physical considerations. A trilinear rupture distance term with breaking points at 100 km and 200 km is also adopted in the model. The average shear wave velocity at top 30 meters (V s30 ) and a basin depth parameter (Z 1 ) are used to represent the effect of local site conditions on T m . A forward directivity term that takes effect at rupture distances within 40 km is included in the functional form. Besides, we derive a magnitude-dependent aleatory variability model to capture the varying within-event standard deviations versus M w . The proposed model can be used to estimate T m for earthquake scenarios with magnitudes in the range of 3–7.9 and rupture distance up to 300 km.</description><identifier>ISSN: 1570-761X</identifier><identifier>EISSN: 1573-1456</identifier><identifier>DOI: 10.1007/s10518-017-0088-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Civil Engineering ; Cut-off ; Directivity ; Distance ; Earth and Environmental Science ; Earth Sciences ; Earthquakes ; Empirical models ; Environmental Engineering/Biotechnology ; Functional anatomy ; Geophysics/Geodesy ; Geotechnical Engineering &amp; Applied Earth Sciences ; Ground motion ; Hydrogeology ; Mathematical models ; Measuring instruments ; Original Research Paper ; Prediction models ; Rupture ; Rupturing ; S waves ; Seismic activity ; Seismic engineering ; Seismic velocities ; Shear wave velocities ; Structural Geology ; Wave velocity</subject><ispartof>Bulletin of earthquake engineering, 2017-07, Vol.15 (7), p.2673-2693</ispartof><rights>Springer Science+Business Media Dordrecht 2017</rights><rights>Bulletin of Earthquake Engineering is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-1e6fa438ee2e7caf5214fd458509c4e0f1bac98cb3b6054af49bb5279caeea8a3</citedby><cites>FETCH-LOGICAL-a339t-1e6fa438ee2e7caf5214fd458509c4e0f1bac98cb3b6054af49bb5279caeea8a3</cites><orcidid>0000-0002-4392-6255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10518-017-0088-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10518-017-0088-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Du, Wenqi</creatorcontrib><title>An empirical model for the mean period (Tm) of ground motions using the NGA-West2 database</title><title>Bulletin of earthquake engineering</title><addtitle>Bull Earthquake Eng</addtitle><description>Frequency content is an important characteristic of earthquake shakings. The mean period (T m ) of a ground motion has been regarded as the preferred frequency content parameter. In this paper, a new predictive model for T m is developed based on the horizontal components of ground motions selected from the expanded NGA-West2 database. The new model includes a piece-wise linear moment magnitude (M w ) term with a breaking M w value as 5 and a cutoff value as 7.3, which is adopted based on the distribution of empirical data as well as physical considerations. A trilinear rupture distance term with breaking points at 100 km and 200 km is also adopted in the model. The average shear wave velocity at top 30 meters (V s30 ) and a basin depth parameter (Z 1 ) are used to represent the effect of local site conditions on T m . A forward directivity term that takes effect at rupture distances within 40 km is included in the functional form. Besides, we derive a magnitude-dependent aleatory variability model to capture the varying within-event standard deviations versus M w . The proposed model can be used to estimate T m for earthquake scenarios with magnitudes in the range of 3–7.9 and rupture distance up to 300 km.</description><subject>Civil Engineering</subject><subject>Cut-off</subject><subject>Directivity</subject><subject>Distance</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earthquakes</subject><subject>Empirical models</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Functional anatomy</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Ground motion</subject><subject>Hydrogeology</subject><subject>Mathematical models</subject><subject>Measuring instruments</subject><subject>Original Research Paper</subject><subject>Prediction models</subject><subject>Rupture</subject><subject>Rupturing</subject><subject>S waves</subject><subject>Seismic activity</subject><subject>Seismic engineering</subject><subject>Seismic velocities</subject><subject>Shear wave velocities</subject><subject>Structural Geology</subject><subject>Wave velocity</subject><issn>1570-761X</issn><issn>1573-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kLFOwzAQhi0EEqXwAGyWWGAwnJM4tseqgoJUwVIEYrGc5FxSNXGwk4G3J20ZWJjuhu__7_QRcsnhlgPIu8hBcMWASwagFFNHZMKFTBnPRH6834HJnL-fkrMYNwCJkBom5GPWUmy6OtSl3dLGV7ilzgfafyJt0La0w1D7il6vmhvqHV0HP7TVCPa1byMdYt2u9_DzYsbeMPYJrWxvCxvxnJw4u4148Tun5PXhfjV_ZMuXxdN8tmQ2TXXPOObOZqlCTFCW1omEZ67KhBKgywzB8cKWWpVFWuQgMusyXRQikbq0iFbZdEquDr1d8F_D-ILZ-CG040nDNeSKJ1rCSPEDVQYfY0BnulA3NnwbDman0BwUmlGh2Sk0aswkh0wc2XaN4U_zv6EfHOhziA</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Du, Wenqi</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4392-6255</orcidid></search><sort><creationdate>20170701</creationdate><title>An empirical model for the mean period (Tm) of ground motions using the NGA-West2 database</title><author>Du, Wenqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-1e6fa438ee2e7caf5214fd458509c4e0f1bac98cb3b6054af49bb5279caeea8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Civil Engineering</topic><topic>Cut-off</topic><topic>Directivity</topic><topic>Distance</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earthquakes</topic><topic>Empirical models</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Functional anatomy</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Ground motion</topic><topic>Hydrogeology</topic><topic>Mathematical models</topic><topic>Measuring instruments</topic><topic>Original Research Paper</topic><topic>Prediction models</topic><topic>Rupture</topic><topic>Rupturing</topic><topic>S waves</topic><topic>Seismic activity</topic><topic>Seismic engineering</topic><topic>Seismic velocities</topic><topic>Shear wave velocities</topic><topic>Structural Geology</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Wenqi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Bulletin of earthquake engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Wenqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An empirical model for the mean period (Tm) of ground motions using the NGA-West2 database</atitle><jtitle>Bulletin of earthquake engineering</jtitle><stitle>Bull Earthquake Eng</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>15</volume><issue>7</issue><spage>2673</spage><epage>2693</epage><pages>2673-2693</pages><issn>1570-761X</issn><eissn>1573-1456</eissn><abstract>Frequency content is an important characteristic of earthquake shakings. The mean period (T m ) of a ground motion has been regarded as the preferred frequency content parameter. In this paper, a new predictive model for T m is developed based on the horizontal components of ground motions selected from the expanded NGA-West2 database. The new model includes a piece-wise linear moment magnitude (M w ) term with a breaking M w value as 5 and a cutoff value as 7.3, which is adopted based on the distribution of empirical data as well as physical considerations. A trilinear rupture distance term with breaking points at 100 km and 200 km is also adopted in the model. The average shear wave velocity at top 30 meters (V s30 ) and a basin depth parameter (Z 1 ) are used to represent the effect of local site conditions on T m . A forward directivity term that takes effect at rupture distances within 40 km is included in the functional form. Besides, we derive a magnitude-dependent aleatory variability model to capture the varying within-event standard deviations versus M w . The proposed model can be used to estimate T m for earthquake scenarios with magnitudes in the range of 3–7.9 and rupture distance up to 300 km.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10518-017-0088-8</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-4392-6255</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1570-761X
ispartof Bulletin of earthquake engineering, 2017-07, Vol.15 (7), p.2673-2693
issn 1570-761X
1573-1456
language eng
recordid cdi_proquest_journals_1906812970
source SpringerLink Journals - AutoHoldings
subjects Civil Engineering
Cut-off
Directivity
Distance
Earth and Environmental Science
Earth Sciences
Earthquakes
Empirical models
Environmental Engineering/Biotechnology
Functional anatomy
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Ground motion
Hydrogeology
Mathematical models
Measuring instruments
Original Research Paper
Prediction models
Rupture
Rupturing
S waves
Seismic activity
Seismic engineering
Seismic velocities
Shear wave velocities
Structural Geology
Wave velocity
title An empirical model for the mean period (Tm) of ground motions using the NGA-West2 database
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A06%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20empirical%20model%20for%20the%20mean%20period%20(Tm)%20of%20ground%20motions%20using%20the%20NGA-West2%20database&rft.jtitle=Bulletin%20of%20earthquake%20engineering&rft.au=Du,%20Wenqi&rft.date=2017-07-01&rft.volume=15&rft.issue=7&rft.spage=2673&rft.epage=2693&rft.pages=2673-2693&rft.issn=1570-761X&rft.eissn=1573-1456&rft_id=info:doi/10.1007/s10518-017-0088-8&rft_dat=%3Cproquest_cross%3E1906812970%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1906812970&rft_id=info:pmid/&rfr_iscdi=true