Breakable Hybrid Organosilica Nanocapsules for Protein Delivery

The direct delivery of specific proteins to live cells promises a tremendous impact for biological and medical applications, from therapeutics to genetic engineering. However, the process mostly involves tedious techniques and often requires extensive alteration of the protein itself. Herein we repo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2016-03, Vol.55 (10), p.3323-3327
Hauptverfasser: Prasetyanto, Eko Adi, Bertucci, Alessandro, Septiadi, Dedy, Corradini, Roberto, Castro-Hartmann, Pablo, De Cola, Luisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3327
container_issue 10
container_start_page 3323
container_title Angewandte Chemie International Edition
container_volume 55
creator Prasetyanto, Eko Adi
Bertucci, Alessandro
Septiadi, Dedy
Corradini, Roberto
Castro-Hartmann, Pablo
De Cola, Luisa
description The direct delivery of specific proteins to live cells promises a tremendous impact for biological and medical applications, from therapeutics to genetic engineering. However, the process mostly involves tedious techniques and often requires extensive alteration of the protein itself. Herein we report a straightforward approach to encapsulate native proteins by using breakable organosilica matrices that disintegrate upon exposure to a chemical stimulus. The biomolecule‐containing capsules were tested for the intracellular delivery of highly cytotoxic proteins into C6 glioma cells. We demonstrate that the shell is broken, the release of the active proteins occurs, and therefore our hybrid architecture is a promising strategy to deliver fragile biomacromolecules into living organisms. Speshell delivery: The construction of a breakable shell around proteins can be used for encapsulation and delivery of functional proteins. The shell comprises silica units that are held together with disulfide bridges. These stimulus‐responsive containers break into very small pieces upon contact with the cell environment, and the proteins retain their activity during encapsulation.
doi_str_mv 10.1002/anie.201508288
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1906600304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1906600304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6128-f2d2ea513875d7a02461197368e1f8ecaa4bb28ceb14bfbee690c9849da9f1c33</originalsourceid><addsrcrecordid>eNqFkE1PwkAURSdGI4puXZomrovz1ZnpyiAikCCYiDFxM5m2r2agUJwBtf_eEpC40tW7i3PPSy5CFwS3CMb02iwstCgmEVZUqQN0QiJKQiYlO6wzZyyUKiINdOr9tOaVwuIYNagQnEWSn6CbWwdmZpICgn6VOJsFY_dmFqW3hU1NMKpjapZ-XYAP8tIFj65cgV0Ed1DYD3DVGTrKTeHhfHeb6Pm-O-n0w-G4N-i0h2EqCFVhTjMKJiJMySiTBlMuCIklEwpIriA1hicJVSkkhCd5AiBinMaKx5mJc5Iy1kRXW-_Sle9r8Cs9LdduUb_UJMZCYMww_5OSQmEpucI11dpSqSu9d5DrpbNz4ypNsN6sqjer6v2qdeFyp10nc8j2-M-MNRBvgU9bQPWPTrdHg-5vebjtWr-Cr33XuJkWkslIv4x6uicfuBg-TfQr-wZW3pGp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1768077480</pqid></control><display><type>article</type><title>Breakable Hybrid Organosilica Nanocapsules for Protein Delivery</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Prasetyanto, Eko Adi ; Bertucci, Alessandro ; Septiadi, Dedy ; Corradini, Roberto ; Castro-Hartmann, Pablo ; De Cola, Luisa</creator><creatorcontrib>Prasetyanto, Eko Adi ; Bertucci, Alessandro ; Septiadi, Dedy ; Corradini, Roberto ; Castro-Hartmann, Pablo ; De Cola, Luisa</creatorcontrib><description>The direct delivery of specific proteins to live cells promises a tremendous impact for biological and medical applications, from therapeutics to genetic engineering. However, the process mostly involves tedious techniques and often requires extensive alteration of the protein itself. Herein we report a straightforward approach to encapsulate native proteins by using breakable organosilica matrices that disintegrate upon exposure to a chemical stimulus. The biomolecule‐containing capsules were tested for the intracellular delivery of highly cytotoxic proteins into C6 glioma cells. We demonstrate that the shell is broken, the release of the active proteins occurs, and therefore our hybrid architecture is a promising strategy to deliver fragile biomacromolecules into living organisms. Speshell delivery: The construction of a breakable shell around proteins can be used for encapsulation and delivery of functional proteins. The shell comprises silica units that are held together with disulfide bridges. These stimulus‐responsive containers break into very small pieces upon contact with the cell environment, and the proteins retain their activity during encapsulation.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201508288</identifier><identifier>PMID: 26643574</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Architecture ; Brain tumors ; Cytotoxicity ; Encapsulation ; Exposure ; Genetic engineering ; Glioma ; Glioma cells ; hybrid materials ; Intracellular ; Matrices (mathematics) ; Microscopy, Electron, Transmission ; Nanocapsules ; Nanostructure ; nanostructures ; organosilica ; Organosilicon Compounds - administration &amp; dosage ; protein delivery ; Proteins ; Proteins - administration &amp; dosage ; Spectrophotometry, Ultraviolet</subject><ispartof>Angewandte Chemie International Edition, 2016-03, Vol.55 (10), p.3323-3327</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6128-f2d2ea513875d7a02461197368e1f8ecaa4bb28ceb14bfbee690c9849da9f1c33</citedby><cites>FETCH-LOGICAL-c6128-f2d2ea513875d7a02461197368e1f8ecaa4bb28ceb14bfbee690c9849da9f1c33</cites><orcidid>0000-0002-7641-861X ; 0000-0002-8026-0923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201508288$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201508288$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26643574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prasetyanto, Eko Adi</creatorcontrib><creatorcontrib>Bertucci, Alessandro</creatorcontrib><creatorcontrib>Septiadi, Dedy</creatorcontrib><creatorcontrib>Corradini, Roberto</creatorcontrib><creatorcontrib>Castro-Hartmann, Pablo</creatorcontrib><creatorcontrib>De Cola, Luisa</creatorcontrib><title>Breakable Hybrid Organosilica Nanocapsules for Protein Delivery</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>The direct delivery of specific proteins to live cells promises a tremendous impact for biological and medical applications, from therapeutics to genetic engineering. However, the process mostly involves tedious techniques and often requires extensive alteration of the protein itself. Herein we report a straightforward approach to encapsulate native proteins by using breakable organosilica matrices that disintegrate upon exposure to a chemical stimulus. The biomolecule‐containing capsules were tested for the intracellular delivery of highly cytotoxic proteins into C6 glioma cells. We demonstrate that the shell is broken, the release of the active proteins occurs, and therefore our hybrid architecture is a promising strategy to deliver fragile biomacromolecules into living organisms. Speshell delivery: The construction of a breakable shell around proteins can be used for encapsulation and delivery of functional proteins. The shell comprises silica units that are held together with disulfide bridges. These stimulus‐responsive containers break into very small pieces upon contact with the cell environment, and the proteins retain their activity during encapsulation.</description><subject>Architecture</subject><subject>Brain tumors</subject><subject>Cytotoxicity</subject><subject>Encapsulation</subject><subject>Exposure</subject><subject>Genetic engineering</subject><subject>Glioma</subject><subject>Glioma cells</subject><subject>hybrid materials</subject><subject>Intracellular</subject><subject>Matrices (mathematics)</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanocapsules</subject><subject>Nanostructure</subject><subject>nanostructures</subject><subject>organosilica</subject><subject>Organosilicon Compounds - administration &amp; dosage</subject><subject>protein delivery</subject><subject>Proteins</subject><subject>Proteins - administration &amp; dosage</subject><subject>Spectrophotometry, Ultraviolet</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1PwkAURSdGI4puXZomrovz1ZnpyiAikCCYiDFxM5m2r2agUJwBtf_eEpC40tW7i3PPSy5CFwS3CMb02iwstCgmEVZUqQN0QiJKQiYlO6wzZyyUKiINdOr9tOaVwuIYNagQnEWSn6CbWwdmZpICgn6VOJsFY_dmFqW3hU1NMKpjapZ-XYAP8tIFj65cgV0Ed1DYD3DVGTrKTeHhfHeb6Pm-O-n0w-G4N-i0h2EqCFVhTjMKJiJMySiTBlMuCIklEwpIriA1hicJVSkkhCd5AiBinMaKx5mJc5Iy1kRXW-_Sle9r8Cs9LdduUb_UJMZCYMww_5OSQmEpucI11dpSqSu9d5DrpbNz4ypNsN6sqjer6v2qdeFyp10nc8j2-M-MNRBvgU9bQPWPTrdHg-5vebjtWr-Cr33XuJkWkslIv4x6uicfuBg-TfQr-wZW3pGp</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Prasetyanto, Eko Adi</creator><creator>Bertucci, Alessandro</creator><creator>Septiadi, Dedy</creator><creator>Corradini, Roberto</creator><creator>Castro-Hartmann, Pablo</creator><creator>De Cola, Luisa</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-7641-861X</orcidid><orcidid>https://orcid.org/0000-0002-8026-0923</orcidid></search><sort><creationdate>20160301</creationdate><title>Breakable Hybrid Organosilica Nanocapsules for Protein Delivery</title><author>Prasetyanto, Eko Adi ; Bertucci, Alessandro ; Septiadi, Dedy ; Corradini, Roberto ; Castro-Hartmann, Pablo ; De Cola, Luisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6128-f2d2ea513875d7a02461197368e1f8ecaa4bb28ceb14bfbee690c9849da9f1c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Architecture</topic><topic>Brain tumors</topic><topic>Cytotoxicity</topic><topic>Encapsulation</topic><topic>Exposure</topic><topic>Genetic engineering</topic><topic>Glioma</topic><topic>Glioma cells</topic><topic>hybrid materials</topic><topic>Intracellular</topic><topic>Matrices (mathematics)</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanocapsules</topic><topic>Nanostructure</topic><topic>nanostructures</topic><topic>organosilica</topic><topic>Organosilicon Compounds - administration &amp; dosage</topic><topic>protein delivery</topic><topic>Proteins</topic><topic>Proteins - administration &amp; dosage</topic><topic>Spectrophotometry, Ultraviolet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasetyanto, Eko Adi</creatorcontrib><creatorcontrib>Bertucci, Alessandro</creatorcontrib><creatorcontrib>Septiadi, Dedy</creatorcontrib><creatorcontrib>Corradini, Roberto</creatorcontrib><creatorcontrib>Castro-Hartmann, Pablo</creatorcontrib><creatorcontrib>De Cola, Luisa</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasetyanto, Eko Adi</au><au>Bertucci, Alessandro</au><au>Septiadi, Dedy</au><au>Corradini, Roberto</au><au>Castro-Hartmann, Pablo</au><au>De Cola, Luisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breakable Hybrid Organosilica Nanocapsules for Protein Delivery</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>55</volume><issue>10</issue><spage>3323</spage><epage>3327</epage><pages>3323-3327</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>The direct delivery of specific proteins to live cells promises a tremendous impact for biological and medical applications, from therapeutics to genetic engineering. However, the process mostly involves tedious techniques and often requires extensive alteration of the protein itself. Herein we report a straightforward approach to encapsulate native proteins by using breakable organosilica matrices that disintegrate upon exposure to a chemical stimulus. The biomolecule‐containing capsules were tested for the intracellular delivery of highly cytotoxic proteins into C6 glioma cells. We demonstrate that the shell is broken, the release of the active proteins occurs, and therefore our hybrid architecture is a promising strategy to deliver fragile biomacromolecules into living organisms. Speshell delivery: The construction of a breakable shell around proteins can be used for encapsulation and delivery of functional proteins. The shell comprises silica units that are held together with disulfide bridges. These stimulus‐responsive containers break into very small pieces upon contact with the cell environment, and the proteins retain their activity during encapsulation.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>26643574</pmid><doi>10.1002/anie.201508288</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-7641-861X</orcidid><orcidid>https://orcid.org/0000-0002-8026-0923</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2016-03, Vol.55 (10), p.3323-3327
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_journals_1906600304
source MEDLINE; Access via Wiley Online Library
subjects Architecture
Brain tumors
Cytotoxicity
Encapsulation
Exposure
Genetic engineering
Glioma
Glioma cells
hybrid materials
Intracellular
Matrices (mathematics)
Microscopy, Electron, Transmission
Nanocapsules
Nanostructure
nanostructures
organosilica
Organosilicon Compounds - administration & dosage
protein delivery
Proteins
Proteins - administration & dosage
Spectrophotometry, Ultraviolet
title Breakable Hybrid Organosilica Nanocapsules for Protein Delivery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T22%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breakable%20Hybrid%20Organosilica%20Nanocapsules%20for%20Protein%20Delivery&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Prasetyanto,%20Eko%20Adi&rft.date=2016-03-01&rft.volume=55&rft.issue=10&rft.spage=3323&rft.epage=3327&rft.pages=3323-3327&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201508288&rft_dat=%3Cproquest_cross%3E1906600304%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1768077480&rft_id=info:pmid/26643574&rfr_iscdi=true